def _resample_expectations_with_beta(results, prior_counts=1):
    """
    Resample expectation values by constructing a beta distribution and sampling from it.

    Used by :py:func:`estimate_variance`.

    :param results: A list of ExperimentResults
    :param prior_counts: Number of "counts" to add to alpha and beta for the beta distribution
        from which we sample.
    :return: A new list of ``results`` where each ExperimentResult's ``expectation`` field
        contained a re-sampled expectation value
    """
    resampled_results = []
    for result in results:
        # reconstruct the raw counts of observations from the pauli observable mean
        num_plus = ((result.expectation + 1) / 2) * result.total_counts
        num_minus = result.total_counts - num_plus

        # We resample this data assuming it was from a beta distribution,
        # with additive smoothing
        alpha = num_plus + prior_counts
        beta = num_minus + prior_counts

        # transform bit bias back to pauli expectation value
        resampled_expect = 2 * np.random.beta(alpha, beta) - 1
        resampled_results += [ExperimentResult(
            setting=result.setting,
            expectation=resampled_expect,
            std_err=result.std_err,
            total_counts=result.total_counts,
        )]
    return resampled_results
def test_R_operator_fixed_point_1_qubit():
    # Check fixed point of operator. See Eq. 5 in Řeháček et al., PRA 75, 042108 (2007).
    qubits = [Q0]

    id_result = ExperimentResult(setting=ID_SETTING, expectation=1, total_counts=1)
    zplus_result = ExperimentResult(setting=Z_SETTING, expectation=1, total_counts=1)
    xplus_result = ExperimentResult(setting=X_SETTING, expectation=1, total_counts=1)

    z_results = [id_result, zplus_result]
    x_results = [id_result, xplus_result]

    def test_trace(rho, results):
        return _R(rho, results, qubits) @ rho @ _R(rho, results, qubits)

    np.testing.assert_allclose(test_trace(PROJ_ZERO, z_results), PROJ_ZERO, atol=1e-12)
    np.testing.assert_allclose(test_trace(PROJ_PLUS, x_results), PROJ_PLUS, atol=1e-12)
Exemple #3
0
def test_survival_statistics():
    # setup
    p0 = 0.98  # p(q0 = 0)
    p1 = 0.5  # p(q1 = 0)
    p_joint = p0 * p1 + (1 - p0) * (1 - p1)
    expectations = [2 * p0 - 1, 2 * p1 - 1, 2 * p_joint - 1]
    variances = np.asarray(
        [p0 * (1 - p0), p1 * (1 - p1), p_joint * (1 - p_joint)]) * 2**2
    n = 10000
    qubits = (0, 1)

    settings = [
        ExperimentSetting(zeros_state(qubits), op)
        for op in all_traceless_pauli_z_terms(qubits)
    ]
    results = (ExperimentResult(setting, exp, n, std_err=np.sqrt(v / n))
               for setting, exp, v in zip(settings, expectations, variances))
    stats = get_stats_by_qubit_group([qubits], [results])[qubits]
    exps = stats['expectation'][0]
    errs = stats['std_err'][0]

    np.testing.assert_allclose(exps, expectations)
    np.testing.assert_allclose(errs, np.sqrt(variances / n))

    survival_prob, survival_var = z_obs_stats_to_survival_statistics(
        exps, errs, n)

    np.testing.assert_allclose(survival_prob, p0 * p1)
    np.testing.assert_allclose(np.sqrt(survival_var), .004999, rtol=1e-4)
Exemple #4
0
def test_survival_statistics_3():
    # p0 is probability qubit 0 is 0
    # p1 is probability qubit 1 is 0

    for p0, p1 in zip([1.0, .99, .99], [1.0, 1.0, .99]):
        # setup
        p_joint = p0 * p1 + (1 - p0) * (1 - p1)
        expectations = [2 * p0 - 1, 2 * p1 - 1, 2 * p_joint - 1]
        variances = np.asarray(
            [p0 * (1 - p0), p1 * (1 - p1), p_joint * (1 - p_joint)]) * 2**2
        n = 100
        qubits = (0, 1)
        settings = [
            ExperimentSetting(zeros_state(qubits), op)
            for op in all_traceless_pauli_z_terms(qubits)
        ]
        results = (ExperimentResult(setting, exp, n, std_err=np.sqrt(
            v /
            n)) for setting, exp, v in zip(settings, expectations, variances))

        stats = get_stats_by_qubit_group([qubits], [results])[qubits]
        exps = stats['expectation'][0]
        errs = stats['std_err'][0]

        np.testing.assert_allclose(exps, expectations)
        np.testing.assert_allclose(errs, np.sqrt(variances / n))

        survival_prob, survival_var = z_obs_stats_to_survival_statistics(
            exps, errs, n)
        assert survival_prob == p0 * p1
Exemple #5
0
def test_survival_statistics_2():
    # p0 is probability qubit 0 is 0
    for p0 in [1.0, .99]:
        exp = 2 * p0 - 1
        variance = p0 * (1 - p0) * 2**2
        n = 100
        qubits = (0, )
        setting = [
            ExperimentSetting(zeros_state(qubits), op)
            for op in all_traceless_pauli_z_terms(qubits)
        ][0]
        results = (ExperimentResult(setting,
                                    exp,
                                    n,
                                    std_err=np.sqrt(variance / n)), )

        stats = get_stats_by_qubit_group([qubits], [results])[qubits]
        exps = stats['expectation'][0]
        errs = stats['std_err'][0]

        np.testing.assert_allclose(exps, [exp])
        np.testing.assert_allclose(errs, [np.sqrt(variance / n)])

        survival_prob, survival_var = z_obs_stats_to_survival_statistics(
            exps, errs)

        assert survival_prob == p0
def test_R_operator_fixed_point_2_qubit():
    # Check fixed point of operator. See Eq. 5 in Řeháček et al., PRA 75, 042108 (2007).
    qubits = [0, 1]
    id_setting = ExperimentSetting(in_state=zeros_state(qubits), observable=sI(qubits[0])*sI(
        qubits[1]))
    zz_setting = ExperimentSetting(in_state=zeros_state(qubits), observable=sZ(qubits[0])*sI(
        qubits[1]))

    id_result = ExperimentResult(setting=id_setting, expectation=1, total_counts=1)
    zzplus_result = ExperimentResult(setting=zz_setting, expectation=1, total_counts=1)

    zz_results = [id_result, zzplus_result]

    # Z basis test
    r = _R(P00, zz_results, qubits)
    actual = r @ P00 @ r
    np.testing.assert_allclose(actual, P00, atol=1e-12)
def test_R_operator_with_hand_calc_example_1_qubit():
    # This example was worked out by hand
    rho = ID / 2
    obs_freqs = [3, 7]
    my_by_hand_calc_ans_Z = ((3 / 0.5) * PROJ_ZERO + (7 / 0.5) * PROJ_ONE) / sum(obs_freqs)
    my_by_hand_calc_ans_X = ((3 / 0.5) * PROJ_PLUS + (7 / 0.5) * PROJ_MINUS) / sum(obs_freqs)

    qubits = [Q0]
    exp = (obs_freqs[0] - obs_freqs[1]) / sum(obs_freqs)
    zplus_result = ExperimentResult(setting=Z_SETTING, expectation=exp, total_counts=sum(obs_freqs))
    xplus_result = ExperimentResult(setting=X_SETTING, expectation=exp, total_counts=sum(obs_freqs))

    z_results = [zplus_result]
    x_results = [xplus_result]

    # Z basis test
    np.testing.assert_allclose(_R(rho, z_results, qubits), my_by_hand_calc_ans_Z, atol=1e-12)
    # X basis test
    np.testing.assert_allclose(_R(rho, x_results, qubits), my_by_hand_calc_ans_X, atol=1e-12)
Exemple #8
0
def wfn_estimate_observables(n_qubits, tomo_expt: ObservablesExperiment):
    if len(tomo_expt.program.defined_gates) > 0:
        raise pytest.skip("Can't do wfn on defined gates yet")
    wfn = NumpyWavefunctionSimulator(n_qubits)
    for settings in tomo_expt:
        for setting in settings:
            prog = Program()
            for oneq_state in setting.in_state.states:
                prog += _one_q_state_prep(oneq_state)
            prog += tomo_expt.program

            yield ExperimentResult(
                setting=setting,
                expectation=wfn.reset().do_program(prog).expectation(setting.observable),
                std_err=0.,
                total_counts=1,  # don't set to zero unless you want nans
            )