from formatmatrices import formatmatrix from numpy import array from visualise import visualiseOpenLoopSystem """This has been altered for the sake of convenience""" testcase = 't' dispRGA = True dispEigenForwardAndBackward = True dispEigenBlend = True dispEdgeWeight = True dispBestControl = True if testcase == 'a': """This is btest1""" test = formatmatrix("btest1.csv", "btest1ObviousConnections.txt", 3, 0) test2 = visualiseOpenLoopSystem( test.nodummyvariablelist, test.nodummydiff, 2, test.scaledforwardgain, test.scaledforwardconnection, test.scaledforwardvariablelist, test.scaledbackwardgain, test.scaledbackwardconnection, test.scaledbackwardvariablelist, test.nodummygain, test.nodummyconnection, ['v3', 'v4']) nodepos = { test.nodummyvariablelist[0]: array([1, 1]), test.nodummyvariablelist[1]: array([1, 2]), test.nodummyvariablelist[2]: array([4, 1]), test.nodummyvariablelist[3]: array([4, 2]) }
''' """This class will be used to run controlranking""" """Import classes""" from controlranking import loopranking from formatmatrices import formatmatrix from numpy import array, transpose, arange, empty import networkx as nx import matplotlib.pyplot as plt from operator import itemgetter testcase = 'local1' #use local gains to calculate importances if == local if testcase == 'local': datamatrix = formatmatrix("connectionsTEcontrol.csv", "scaledcontrol.txt", 21 ,0) datamatrixNC = formatmatrix("connectionsTE.csv","scaledinputs100h5.txt",13,0 ) controlmatrix = loopranking(datamatrix.scaledforwardgain, datamatrix.scaledforwardvariablelist, datamatrix.scaledforwardconnection, datamatrix.scaledbackwardgain, datamatrix.scaledbackwardvariablelist, datamatrix.scaledbackwardconnection, datamatrix.nodummyvariablelist, datamatrixNC.scaledforwardgain, datamatrixNC.scaledforwardvariablelist, datamatrixNC.scaledforwardconnection, datamatrixNC.scaledbackwardgain, datamatrixNC.scaledbackwardvariablelist, datamatrixNC.scaledbackwardconnection) controlmatrix.displayControlImportances(datamatrixNC.nodummyconnection, datamatrix.nodummyconnection) controlmatrix.showAll() controlmatrix.exportToGML() else: #this works datamatrix = formatmatrix("connectionsTEcontrol.csv","controlcorrelation.txt",0,0,partialcorrelation=True) datamatrixNC = formatmatrix("connectionsTE.csv","controlcorrelationNOCONTROL.txt",0,0,partialcorrelation=True) controlmatrix = loopranking(datamatrix.scaledforwardgain, datamatrix.scaledforwardvariablelist, datamatrix.scaledforwardconnection, datamatrix.scaledbackwardgain, datamatrix.scaledbackwardvariablelist, datamatrix.scaledbackwardconnection, datamatrix.nodummyvariablelist, datamatrixNC.scaledforwardgain, datamatrixNC.scaledforwardvariablelist, datamatrixNC.scaledforwardconnection, datamatrixNC.scaledbackwardgain, datamatrixNC.scaledbackwardvariablelist, datamatrixNC.scaledbackwardconnection) controlmatrix.displayControlImportances(datamatrixNC.nodummyconnection, datamatrix.nodummyconnection)
@author: St Elmo Wilken ''' """This class will be used to run controlranking""" """Import classes""" from controlranking import loopranking from formatmatrices import formatmatrix from numpy import array, transpose, arange, empty import networkx as nx import matplotlib.pyplot as plt from operator import itemgetter testcase = 'local1' #use local gains to calculate importances if == local if testcase == 'local': datamatrix = formatmatrix("connectionsTEcontrol.csv", "scaledcontrol.txt", 21, 0) datamatrixNC = formatmatrix("connectionsTE.csv", "scaledinputs100h5.txt", 13, 0) controlmatrix = loopranking( datamatrix.scaledforwardgain, datamatrix.scaledforwardvariablelist, datamatrix.scaledforwardconnection, datamatrix.scaledbackwardgain, datamatrix.scaledbackwardvariablelist, datamatrix.scaledbackwardconnection, datamatrix.nodummyvariablelist, datamatrixNC.scaledforwardgain, datamatrixNC.scaledforwardvariablelist, datamatrixNC.scaledforwardconnection, datamatrixNC.scaledbackwardgain, datamatrixNC.scaledbackwardvariablelist, datamatrixNC.scaledbackwardconnection) controlmatrix.displayControlImportances(datamatrixNC.nodummyconnection, datamatrix.nodummyconnection)
"""This has been altered for the sake of convenience""" testcase = 't' dispRGA = True dispEigenForwardAndBackward = True dispEigenBlend = True dispEdgeWeight = True dispBestControl = True if testcase == 'a': """This is btest1""" test = formatmatrix("btest1.csv", "btest1ObviousConnections.txt", 3,0) test2 = visualiseOpenLoopSystem(test.nodummyvariablelist, test.nodummydiff, 2,test.scaledforwardgain, test.scaledforwardconnection, test.scaledforwardvariablelist, test.scaledbackwardgain, test.scaledbackwardconnection, test.scaledbackwardvariablelist, test.nodummygain, test.nodummyconnection, ['v3', 'v4']) nodepos = {test.nodummyvariablelist[0]: array([1,1]), test.nodummyvariablelist[1]: array([1,2]), test.nodummyvariablelist[2]: array([4,1]), test.nodummyvariablelist[3]: array([4,2])} test2.displayConnectivityAndLocalGains(test.nodummyconnection, test.nodummygain, test.nodummyvariablelist, nodepos) if dispRGA: test2.displayRGA(1, nodepos) test2.displayRGA(2, nodepos) test2.displayRGAmatrix() if dispEigenForwardAndBackward: