Exemple #1
0
def train_edge(conv_weight_decay=REGULARIZATION_STRENGTH):

    training_queue = ShuffleQueue(cleaneval_train)

    data_shape = [BATCH_SIZE, PATCH_SIZE - 1, 1, N_EDGE_FEATURES]
    labs_shape = [BATCH_SIZE, PATCH_SIZE - 1, 1, 1]
    train_features = tf.placeholder(tf.float32, shape=data_shape)
    train_labels = tf.placeholder(tf.int64, shape=labs_shape)

    logits = edge(train_features,
                  is_training=True,
                  conv_weight_decay=conv_weight_decay,
                  dropout_keep_prob=DROPOUT_KEEP_PROB)
    l = loss(tf.reshape(logits, [-1, 4]), tf.reshape(train_labels, [-1]))
    train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(l)

    test_features = tf.placeholder(tf.float32)
    tf.get_variable_scope().reuse_variables()
    test_logits = edge(test_features, is_training=False)

    saver = tf.train.Saver(tf.get_collection(EDGE_VARIABLES))
    init_op = tf.global_variables_initializer()

    with tf.Session() as session:
        # Initialize
        session.run(init_op)

        def prediction(features):
            features = features[np.newaxis, :, np.newaxis, :]
            logits = session.run(test_logits,
                                 feed_dict={test_features: features})
            return np.argmax(logits, axis=-1).flatten()

        BEST_VAL_SO_FAR = 0
        for step in range(TRAIN_STEPS + 1):
            # Construct a bs-length numpy array
            _, edge_features, labels, edge_labels = get_batch(training_queue)
            # Run a training step
            loss_val, _ = session.run([l, train_op],
                                      feed_dict={
                                          train_features: edge_features,
                                          train_labels: edge_labels
                                      })

            if step % 100 == 0:
                accuracy_validation = evaluate_edge(cleaneval_validation,
                                                    prediction)
                accuracy_train = evaluate_edge(cleaneval_train, prediction)
                if accuracy_validation > BEST_VAL_SO_FAR:
                    best = True
                    saver.save(session,
                               os.path.join(CHECKPOINT_DIR, 'edge.ckpt'))
                    BEST_VAL_SO_FAR = accuracy_validation
                else:
                    best = False
                print("%10d: train=%.4f, val=%.4f %s" %
                      (step, accuracy_train, accuracy_validation,
                       '*' if best else ''))
        # saver.save(session, os.path.join(CHECKPOINT_DIR, 'edge.ckpt'))
        return accuracy_validation
Exemple #2
0
def test_structured(lamb=EDGE_LAMBDA):
  from data import cleaneval_test, cleaneval_train, cleaneval_validation
  unary_features = tf.placeholder(tf.float32)
  edge_features  = tf.placeholder(tf.float32)

  # hack to get the right shape weights
  _ = unary(tf.placeholder(tf.float32, shape=[1,PATCH_SIZE,1,N_FEATURES]), False)
  _ = edge(tf.placeholder(tf.float32, shape=[1,PATCH_SIZE,1,N_EDGE_FEATURES]), False)

  tf.get_variable_scope().reuse_variables()
  unary_logits = unary(unary_features, is_training=False)
  edge_logits  = edge(edge_features, is_training=False)

  unary_saver = tf.train.Saver(tf.get_collection(UNARY_VARIABLES))
  edge_saver  = tf.train.Saver(tf.get_collection(EDGE_VARIABLES))

  init_op = tf.global_variables_initializer()

  with tf.Session() as session:
    session.run(init_op)
    unary_saver.restore(session, os.path.join(CHECKPOINT_DIR, "unary.ckpt"))
    edge_saver.restore(session, os.path.join(CHECKPOINT_DIR, "edge.ckpt"))

    from time import time

    start = time()
    def prediction_structured(features, edge_feat):
      features  = features[np.newaxis, :, np.newaxis, :]
      edge_feat = edge_feat[np.newaxis, :, np.newaxis, :]

      unary_lgts = session.run(unary_logits, feed_dict={unary_features: features})
      edge_lgts = session.run(edge_logits, feed_dict={edge_features: edge_feat})

      return viterbi(unary_lgts.reshape([-1,2]), edge_lgts.reshape([-1,4]), lam=lamb)

    def prediction_unary(features, _):
      features = features[np.newaxis, :, np.newaxis, :]
      logits = session.run(unary_logits, feed_dict={unary_features: features})
      return np.argmax(logits, axis=-1).flatten()

    accuracy, precision, recall, f1 = evaluate_unary(cleaneval_test, prediction_structured)
    accuracy_u, precision_u, recall_u, f1_u = evaluate_unary(cleaneval_test, prediction_unary)
    end = time()
    print('duration', end-start)
    print('size', len(cleaneval_test))
    print("Structured: Accuracy=%.5f, precision=%.5f, recall=%.5f, F1=%.5f" % (accuracy, precision, recall, f1))
    print("Just unary: Accuracy=%.5f, precision=%.5f, recall=%.5f, F1=%.5f" % (accuracy_u, precision_u, recall_u, f1_u))
Exemple #3
0
def classify(block_features_file,
             edge_features_file,
             labels_output_file,
             lamb=EDGE_LAMBDA):
    block_features = np.genfromtxt(block_features_file, delimiter=',')
    edge_features = np.genfromtxt(edge_features_file, delimiter=',')

    # Reshape
    block_features = block_features.T[np.newaxis, :,
                                      np.newaxis, :].astype(np.float32)
    edge_features = edge_features.T[np.newaxis, :,
                                    np.newaxis, :].astype(np.float32)

    unary_features = tf.constant(block_features)
    edge_features = tf.constant(edge_features)

    unary_logits = unary(unary_features, is_training=False)
    edge_logits = edge(edge_features, is_training=False)

    unary_saver = tf.train.Saver(tf.get_collection(UNARY_VARIABLES))
    edge_saver = tf.train.Saver(tf.get_collection(EDGE_VARIABLES))

    init_op = tf.global_variables_initializer()

    with tf.Session() as session:
        session.run(init_op)
        unary_saver.restore(session, os.path.join(CHECKPOINT_DIR,
                                                  "unary.ckpt"))
        edge_saver.restore(session, os.path.join(CHECKPOINT_DIR, "edge.ckpt"))

        from time import time
        start = time()

        unary_lgts = session.run(unary_logits)
        edge_lgts = session.run(edge_logits)

        labels = viterbi(unary_lgts.reshape([-1, 2]),
                         edge_lgts.reshape([-1, 4]),
                         lam=lamb).astype(np.int32)

        duration = time() - start
        print("Done. Classification took %.2f seconds " % duration)
        with open(labels_output_file, 'w') as fp:
            fp.write(",".join('%d' % label for label in labels))
        print('CSV labels written to %s' % labels_output_file)