def __init__(self, batch_size, resolution):
     self.resolution = resolution
     self.V = get_space(resolution)
     self.dofs = len(self.V.dofmap().dofs())
     self.phi = np.loadtxt('data/basis_five_param.txt', delimiter=",")
     self.batch_size = batch_size
     self.solver = Fin(self.V)
Exemple #2
0
    def __init__(self, resolution=40, out_type="total_avg"):
        """ 
        INPUTS:
     
        """
        V = get_space(resolution)
        dofs = len(V.dofmap().dofs())
        self.solver = Fin(V)
        self.phi = np.loadtxt('data/basis_five_param.txt', delimiter=",")
        self.phi = self.phi[:, 0:10]
        self.model = load_parametric_model('relu', Adam, 0.004, 6, 50, 150,
                                           600)

        self.out_type = out_type

        if out_type == "total_avg":
            out_dim = 1
        elif out_type == "subfin_avg":
            out_dim = 5
        elif out_type == "rand_pt":
            out_dim = 1
        elif out_type == "rand_pts":
            out_dim = 5

        mm.PyModPiece.__init__(self, [5], [out_dim])
def generate(dataset_size, resolution=40):
    '''
    Create a tensorflow dataset where the features are thermal conductivity parameters
    and the labels are the differences in the quantity of interest between the high 
    fidelity model and the reduced order model (this is the ROM error)

    Arguments: 
        dataset_size - number of feature-label pairs
        resolution   - finite element mesh resolution for the high fidelity model

    Returns:
        dataset      - Tensorflow dataset created from tensor slices
    '''

    V = get_space(resolution)
    dofs = len(V.dofmap().dofs())

    # TODO: Improve this by using mass matrix covariance. Bayesian prior may work well too
    z_s = np.random.uniform(0.1, 1, (dataset_size, dofs))
    phi = np.loadtxt('data/basis.txt', delimiter=",")
    solver = Fin(V)
    errors = np.zeros((dataset_size, 1))

    m = Function(V)
    for i in range(dataset_size):
        m.vector().set_local(z_s[i, :])
        w, y, A, B, C = solver.forward(m)
        psi = np.dot(A, phi)
        A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi)
        errors[i][0] = y - y_r

    dataset = tf.data.Dataset.from_tensor_slices((z_s, errors))

    return dataset
def generate_and_save_dataset(dataset_size, resolution=40):
    V = get_space(resolution)
    dofs = len(V.dofmap().dofs())
    z_s = np.random.uniform(0.1, 1, (dataset_size, dofs))
    phi = np.loadtxt('data/basis.txt', delimiter=",")
    solver = Fin(V)
    errors = np.zeros((dataset_size, 1))

    m = Function(V)
    for i in range(dataset_size):
        m.vector().set_local(z_s[i, :])
        w, y, A, B, C = solver.forward(m)
        psi = np.dot(A, phi)
        A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi)
        errors[i][0] = y - y_r

    np.savetxt('data/z_s_train.txt', z_s, delimiter=",")
    np.savetxt('data/errors_train.txt', errors, delimiter=",")
Exemple #5
0
    def __init__(self, resolution=40, out_type="total_avg"):
        """ 
        INPUTS:
     
        """
        V = get_space(resolution)
        dofs = len(V.dofmap().dofs())
        self.solver = Fin(V)
        self.out_type = out_type

        if out_type == "total_avg":
            out_dim = 1
        elif out_type == "subfin_avg":
            out_dim = 5
        elif out_type == "rand_pt":
            out_dim = 1
        elif out_type == "rand_pts":
            out_dim = 5
        mm.PyModPiece.__init__(self, [5], [out_dim])
def gen_five_param_subfin_avg(dataset_size, resolution=40):
    V = get_space(resolution)
    z_s = np.random.uniform(0.1, 1, (dataset_size, 5))
    phi = np.loadtxt('data/basis_five_param.txt', delimiter=",")
    phi = phi[:, 0:10]
    solver = Fin(V)
    errors = np.zeros((dataset_size, 5))
    avgs = np.zeros((dataset_size, 5))
    avgs_r = np.zeros((dataset_size, 5))

    for i in range(dataset_size):
        w, y, A, B, C = solver.forward_five_param(z_s[i, :])
        avgs[i] = solver.qoi_operator(w)
        psi = np.dot(A, phi)
        A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi)
        avgs_r[i] = solver.reduced_qoi_operator(x_r)
        errors[i] = avgs[i] - avgs_r[i]

    return (z_s, errors)
def generate_five_param_np(dataset_size, resolution=40):
    V = get_space(resolution)
    z_s = np.random.uniform(0.1, 1, (dataset_size, 5))
    phi = np.loadtxt('data/basis_five_param.txt', delimiter=",")
    phi = phi[:, 0:10]
    solver = Fin(V)
    errors = np.zeros((dataset_size, 1))
    y_s = np.zeros((dataset_size, 1))
    y_r_s = np.zeros((dataset_size, 1))

    for i in range(dataset_size):
        w, y, A, B, C = solver.forward_five_param(z_s[i, :])
        y_s[i][0] = y
        psi = np.dot(A, phi)
        A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi)
        y_r_s[i][0] = y_r
        errors[i][0] = y - y_r

    return (z_s, errors)
def generate_five_param(dataset_size, resolution=40):
    V = get_space(resolution)
    dofs = len(V.dofmap().dofs())

    # TODO: Improve this by using mass matrix covariance. Bayesian prior may work well too
    z_s = np.random.uniform(0.1, 1, (dataset_size, 5))
    phi = np.loadtxt('data/basis_five_param.txt', delimiter=",")
    phi = phi[:, 0:20]
    solver = Fin(V)
    errors = np.zeros((dataset_size, 1))

    for i in range(dataset_size):
        w, y, A, B, C = solver.forward_five_param(z_s[i, :])
        psi = np.dot(A, phi)
        A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi)
        errors[i][0] = y - y_r

    #  np.savetxt('data/z_s_eval.txt', z_s, delimiter=",")
    #  np.savetxt('data/errors_eval.txt', errors, delimiter=",")
    dataset = tf.data.Dataset.from_tensor_slices((z_s, errors))

    return dataset
Exemple #9
0
# MUQ Includes
import sys
sys.path.insert(0,'/home/fenics/Installations/MUQ_INSTALL/lib')
import pymuqModeling as mm # Needed for Gaussian distribution
import pymuqApproximation as ma # Needed for Gaussian processes
import pymuqSamplingAlgorithms as ms # Needed for MCMC

resolution = 40
r_fwd = ROM_forward(resolution, out_type="subfin_avg")
d_fwd = DL_ROM_forward(resolution, out_type="subfin_avg")
f_fwd = FOM_forward(resolution, out_type="subfin_avg")

#z_true = np.random.uniform(0.1,1, (1,5))
z_true = np.array([[0.41126864, 0.61789679, 0.75873243, 0.96527541, 0.22348076]])

V = get_space(resolution)
full_solver = Fin(V)
w, y, A, B, C = full_solver.forward_five_param(z_true[0,:])
qoi = full_solver.qoi_operator(w)
obsData = qoi

def MCMC_sample(fwd):
    # Define prior
    logPriorMu = 0.5*np.ones(5)
    logPriorCov = 0.5*np.eye(5)

    logPrior = mm.Gaussian(logPriorMu, logPriorCov).AsDensity()

    # Likelihood
    noiseVar = 1e-4
    noiseCov = noiseVar*np.eye(obsData.size)