Exemple #1
0
class FOM_forward(mm.PyModPiece):
    """
    Solves the thermal fin steady state problem with
    a full order model
    """
    def __init__(self, resolution=40, out_type="total_avg"):
        """ 
        INPUTS:
     
        """
        V = get_space(resolution)
        dofs = len(V.dofmap().dofs())
        self.solver = Fin(V)
        self.out_type = out_type

        if out_type == "total_avg":
            out_dim = 1
        elif out_type == "subfin_avg":
            out_dim = 5
        elif out_type == "rand_pt":
            out_dim = 1
        elif out_type == "rand_pts":
            out_dim = 5
        mm.PyModPiece.__init__(self, [5], [out_dim])

    def EvaluateImpl(self, inputs):
        """
        Performs the forward solve and returns observations.
        
        """
        z = inputs[0]

        x, y, A, B, C = self.solver.forward_five_param(z)
        output = self.solver.qoi_operator(x)
        self.outputs = [output]
def gen_five_param_subfin_avg(dataset_size, resolution=40):
    V = get_space(resolution)
    z_s = np.random.uniform(0.1, 1, (dataset_size, 5))
    phi = np.loadtxt('data/basis_five_param.txt', delimiter=",")
    phi = phi[:, 0:10]
    solver = Fin(V)
    errors = np.zeros((dataset_size, 5))
    avgs = np.zeros((dataset_size, 5))
    avgs_r = np.zeros((dataset_size, 5))

    for i in range(dataset_size):
        w, y, A, B, C = solver.forward_five_param(z_s[i, :])
        avgs[i] = solver.qoi_operator(w)
        psi = np.dot(A, phi)
        A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi)
        avgs_r[i] = solver.reduced_qoi_operator(x_r)
        errors[i] = avgs[i] - avgs_r[i]

    return (z_s, errors)
Exemple #3
0
import pymuqModeling as mm # Needed for Gaussian distribution
import pymuqApproximation as ma # Needed for Gaussian processes
import pymuqSamplingAlgorithms as ms # Needed for MCMC

resolution = 40
r_fwd = ROM_forward(resolution, out_type="subfin_avg")
d_fwd = DL_ROM_forward(resolution, out_type="subfin_avg")
f_fwd = FOM_forward(resolution, out_type="subfin_avg")

#z_true = np.random.uniform(0.1,1, (1,5))
z_true = np.array([[0.41126864, 0.61789679, 0.75873243, 0.96527541, 0.22348076]])

V = get_space(resolution)
full_solver = Fin(V)
w, y, A, B, C = full_solver.forward_five_param(z_true[0,:])
qoi = full_solver.qoi_operator(w)
obsData = qoi

def MCMC_sample(fwd):
    # Define prior
    logPriorMu = 0.5*np.ones(5)
    logPriorCov = 0.5*np.eye(5)

    logPrior = mm.Gaussian(logPriorMu, logPriorCov).AsDensity()

    # Likelihood
    noiseVar = 1e-4
    noiseCov = noiseVar*np.eye(obsData.size)
    likelihood = mm.Gaussian(obsData, noiseCov).AsDensity()

    # Posterior