Exemple #1
0
	def set_fov(self, mask, max_radius = 10): 
		points = set()
		def visit(x, y):
			if (x, y) in mask:
				points.add((x,y))
				return True
			return points.add((x,y))
		fov(self.x, self.y, max_radius, visit)
		self.fov = Mask(points)
Exemple #2
0
def scan_surroundings(life, initial=False, _chunks=[], ignore_chunks=[], judge=True, get_chunks=False, visible_check=True):
	if _chunks:
		_chunk_keys = set(_chunks)
	else:
		_chunk_keys = set()
		
		if SETTINGS['smp']:
			fov.fov(life['pos'], get_vision(life), get_chunks=True, life_id=life['id'])
		else:
			life['fov'] = fov.fov(life['pos'], get_vision(life), callback=lambda pos: _chunk_keys.add(chunks.get_chunk_key_at(pos)))
	
	return list(_chunk_keys)
def do_fov(cells):
    width, height = len(cells[0]), len(cells)
    def visit(x, y):
        if not (0 <= x < width and 0 <= y < height):
            raise IndexError('grid position (%d, %d) out of range'
                                 % (x, y))
        if cells[y][x] == ' ':
            cells[y][x] = '.'
        return cells[y][x] == '#'
    for y, row in enumerate(cells):
        for x, cell in enumerate(row):
            if cell.isdigit() or cell == '@':
                fov(x, y, 1000 if cell == '@' else int(cell), visit)
Exemple #4
0
def do_fov(cells):
    width, height = len(cells[0]), len(cells)

    def visit(x, y):
        if not (0 <= x < width and 0 <= y < height):
            raise IndexError('grid position (%d, %d) out of range' % (x, y))
        if cells[y][x] == ' ':
            cells[y][x] = '.'
        return cells[y][x] == '#'

    for y, row in enumerate(cells):
        for x, cell in enumerate(row):
            if cell.isdigit() or cell == '@':
                fov(x, y, 1000 if cell == '@' else int(cell), visit)
 def update_light(self):
     self.tag += 1
     self.lights = 0
     self.scans = 0
     def visit(y, x):
         self.lights += 1
         if (y, x) not in self.grid:
             return True
         cell = self.grid[y, x]
         cell.tag = self.tag
         cell.color = self.scans
         return self.grid[y, x].char == '#'
     def scan(*args):
         self.scans += 1
     fov(self.y, self.x, self.radius, visit, scan if self.debug else None)
Exemple #6
0
    def __init__(self,
                 coords=(0, 0),
                 glyph=symbol.BAD_GLYPH,
                 speed=72,
                 max_HP=2,
                 currentLevel=None,
                 name="Unnamed",
                 attack=1,
                 defense=0,
                 tags=None,
                 char_level=1,
                 passableTerrain=level.PASSABLE_TERRAIN):

        fixedobj.FixedObject.__init__(self, coords, glyph, currentLevel)
        self.name = name
        self.speed = speed
        self.passableTerrain = passableTerrain
        self.max_HP = max_HP
        self.cur_HP = self.max_HP
        self.attack = attack
        self.defense = defense
        self.char_level = char_level
        self.tags = tags if tags is not None else []
        self.fov = fov.fov()
        self.conditions = {}  # a dict whose keys are condition names,
Exemple #7
0
    def convertLog(self):

        if self.camera_chosen == 0:
            QMessageBox.information(self, 'Warning', 'Select a Camera!')

        elif self.log_type_chosen == 0:
            QMessageBox.information(self, 'Warning', 'Select Log Type!')

        elif self.log_chosen == 0:
            QMessageBox.information(self, 'Warning', 'Select Log File!')

        else:
            fov_values = fov.fov(self.flen, self.sensorw, self.sensorh)
            fov_horizontal = fov_values[0]
            fov_vertical = fov_values[1]

            amsl = self.amslInput.text()

            # if (self.log == 'DJI GO'):
            #     converter.converter(
            #         self.log_file, self.save_location,
            #         fov_h, fov_w, amsl)
            #     QMessageBox.information(self, 'Message', 'Log converted!')

            if (self.log == 'Litchi'):
                self.converted = litchiconverter.converter(
                    self.log_file, self.save_location, fov_horizontal,
                    fov_vertical, amsl)
                if (self.converted):
                    QMessageBox.information(self, 'Message', 'Log converted!')
                else:
                    QMessageBox.information(self, 'Message',
                                            'No video in log file.')
Exemple #8
0
    def update_light(self):
        self.tag += 1
        self.lights = 0
        self.scans = 0

        def visit(y, x):
            self.lights += 1
            if (y, x) not in self.grid:
                return True
            cell = self.grid[y, x]
            cell.tag = self.tag
            cell.color = self.scans
            return self.grid[y, x].char == '#'

        def scan(*args):
            self.scans += 1

        fov(self.y, self.x, self.radius, visit, scan if self.debug else None)
Exemple #9
0
def _render_los(map, pos, size, cython=False, life=None):
    #LOS times:
    #Raycast: 0.0453310012817
    #Recursive Shadowcasting: 0.0119090080261 (worst case), 0.000200033187866 (best case)

    _start_time = time.time()
    _fov = fov.fov(pos, size)
    print time.time() - _start_time

    return _fov
Exemple #10
0
def _render_los(map, pos, size, cython=False, life=None):
	#LOS times:
	#Raycast: 0.0453310012817
	#Recursive Shadowcasting: 0.0119090080261 (worst case), 0.000200033187866 (best case)
	
	_start_time = time.time()
	_fov = fov.fov(pos, size)
	print time.time()-_start_time
	
	return _fov
Exemple #11
0
def scan_surroundings(life,
                      initial=False,
                      _chunks=[],
                      ignore_chunks=[],
                      judge=True,
                      get_chunks=False,
                      visible_check=True):
    if _chunks:
        _chunk_keys = set(_chunks)
    else:
        _chunk_keys = set()

        if SETTINGS['smp']:
            fov.fov(life['pos'],
                    get_vision(life),
                    get_chunks=True,
                    life_id=life['id'])
        else:
            life['fov'] = fov.fov(life['pos'],
                                  get_vision(life),
                                  callback=lambda pos: _chunk_keys.add(
                                      chunks.get_chunk_key_at(pos)))

    return list(_chunk_keys)
Exemple #12
0
def hide(life, targets):
    _target_positions = []
    _avoid_positions = []
    _zones = [zones.get_zone_at_coords(life['pos'])]

    if lfe.find_action(life, [{
            'action': 'dijkstra_move',
            'reason': 'escaping'
    }]):
        if not lfe.ticker(life, 'escaping', 6):
            return False

    #What can the targets see?
    for target_id in targets:
        _target = brain.knows_alife_by_id(life, target_id)
        _zone = zones.get_zone_at_coords(_target['last_seen_at'])

        if not _zone in _zones:
            _zones.append(_zone)

        fov.fov(_target['last_seen_at'],
                sight.get_vision(_target['life']),
                callback=lambda pos: _avoid_positions.append(pos))

    #What can we see?
    _can_see_positions = []
    fov.fov(life['pos'],
            sight.get_vision(life),
            callback=lambda pos: _can_see_positions.append(pos))

    #If there are no visible targets, we could be running away from a position we were attacked from
    _cover_exposed_at = brain.get_flag(life, 'cover_exposed_at')

    if _cover_exposed_at:
        _avoid_exposed_cover_positions = set()

        for pos in _cover_exposed_at[:]:
            if tuple(pos[:2]) in _can_see_positions:
                _cover_exposed_at.remove(pos)

                continue

            fov.fov(
                pos,
                int(round(sight.get_vision(life) * .25)),
                callback=lambda pos: _avoid_exposed_cover_positions.add(pos))

        for pos in _avoid_exposed_cover_positions:
            if not pos in _avoid_positions:
                _avoid_positions.append(pos)
    else:
        print 'Something went wrong'

        return False

    #Overlay the two, finding positions we can see but the target can't
    for pos in _can_see_positions[:]:
        if pos in _avoid_positions:
            _can_see_positions.remove(pos)
            continue

        #Get rid of positions that are too close
        for target_id in targets:
            _target = brain.knows_alife_by_id(life, target_id)

            if bad_numbers.distance(_target['last_seen_at'], pos) < 4:
                _can_see_positions.remove(pos)
                break

    #Now scan for cover to prevent hiding in the open
    for pos in _can_see_positions[:]:
        if chunks.get_chunk(chunks.get_chunk_key_at(pos))['max_z'] == 2:
            _can_see_positions.remove(pos)

    if not _can_see_positions:
        if life['pos'] in _cover_exposed_at:
            _cover_exposed_at.remove(life['pos'])

        return False

    if lfe.find_action(life, [{
            'action': 'dijkstra_move',
            'goals': _can_see_positions[:]
    }]):
        return True

    lfe.stop(life)
    lfe.add_action(
        life, {
            'action': 'dijkstra_move',
            'rolldown': True,
            'zones': _zones,
            'goals': _can_see_positions[:],
            'reason': 'escaping'
        }, 200)
Exemple #13
0
def position_to_attack(life, target, engage_distance):
    if lfe.find_action(life, [{
            'action': 'dijkstra_move',
            'reason': 'positioning for attack'
    }]):
        if not lfe.ticker(life, 'attack_position', 4):
            return False

    _target_positions, _zones = combat.get_target_positions_and_zones(
        life, [target])
    _can_see = alife.sight.can_see_position(life,
                                            _target_positions[0],
                                            get_path=True)
    _distance = bad_numbers.distance(life['pos'], _target_positions[0])

    if _can_see and len(_can_see) < engage_distance * .85:
        if life['path']:
            lfe.stop(life)
    elif _distance < engage_distance * .9:
        _avoid_positions = set()
        _target_area = set()

        for life_id in alife.judgement.get_trusted(life,
                                                   visible=False,
                                                   only_recent=True):
            fov.fov(LIFE[life_id]['pos'],
                    int(round(sight.get_vision(life) * .25)),
                    callback=lambda pos: _avoid_positions.add(pos))

        fov.fov(_target_positions[0],
                int(round(sight.get_vision(life) * .15)),
                callback=lambda pos: _target_area.add(pos))

        _min_view_distance = int(round(sight.get_vision(life) * .25))
        _max_view_distance = int(round(sight.get_vision(life) * .5))
        _attack_positions = set(
            zones.dijkstra_map(
                life['pos'],
                _target_positions,
                _zones,
                rolldown=True,
                return_score_in_range=[_min_view_distance,
                                       _max_view_distance]))

        _attack_positions = _attack_positions - _target_area

        if not _attack_positions:
            return False

        if not lfe.find_action(life, [{
                'action': 'dijkstra_move',
                'orig_goals': list(_attack_positions),
                'avoid_positions': list(_avoid_positions)
        }]):
            lfe.stop(life)

            lfe.add_action(
                life, {
                    'action':
                    'dijkstra_move',
                    'rolldown':
                    True,
                    'goals': [
                        list(p)
                        for p in random.sample(_attack_positions,
                                               len(_attack_positions) / 2)
                    ],
                    'orig_goals':
                    list(_attack_positions),
                    'avoid_positions':
                    list(_avoid_positions),
                    'reason':
                    'positioning for attack'
                }, 999)

            return False
    else:
        _can_see_positions = set()
        _target_area = set()
        _avoid_positions = set()

        fov.fov(life['pos'],
                int(round(sight.get_vision(life) * .75)),
                callback=lambda pos: _can_see_positions.add(pos))
        fov.fov(_target_positions[0],
                int(round(sight.get_vision(life) * .75)),
                callback=lambda pos: _target_area.add(pos))

        for life_id in alife.judgement.get_trusted(life,
                                                   visible=False,
                                                   only_recent=True):
            _path_dest = lfe.path_dest(LIFE[life_id])

            if not _path_dest:
                continue

            if len(_path_dest) == 2:
                _path_dest = list(_path_dest[:])
                _path_dest.append(LIFE[life_id]['pos'][2])

            fov.fov(_path_dest,
                    5,
                    callback=lambda pos: _avoid_positions.add(pos))

        _avoid_positions = list(_avoid_positions)
        _sneak_positions = _can_see_positions - _target_area
        _move_positions = zones.dijkstra_map(LIFE[target]['pos'],
                                             list(_sneak_positions),
                                             _zones,
                                             rolldown=True)

        if not _move_positions:
            travel_to_position(life, list(_target_positions[0]))
            return False

        if not lfe.find_action(life, [{
                'action': 'dijkstra_move',
                'orig_goals': _move_positions,
                'avoid_positions': _avoid_positions
        }]):
            lfe.stop(life)

            lfe.add_action(
                life, {
                    'action': 'dijkstra_move',
                    'rolldown': True,
                    'goals': [list(p) for p in _move_positions],
                    'orig_goals': _move_positions,
                    'avoid_positions': _avoid_positions,
                    'reason': 'positioning for attack'
                }, 999)

            return False

    return True
Exemple #14
0
def hide(life, targets):
    _target_positions = []
    _avoid_positions = []
    _zones = [zones.get_zone_at_coords(life["pos"])]

    if lfe.find_action(life, [{"action": "dijkstra_move", "reason": "escaping"}]):
        if not lfe.ticker(life, "escaping", 6):
            return False

            # What can the targets see?
    for target_id in targets:
        _target = brain.knows_alife_by_id(life, target_id)
        _zone = zones.get_zone_at_coords(_target["last_seen_at"])

        if not _zone in _zones:
            _zones.append(_zone)

        fov.fov(
            _target["last_seen_at"],
            sight.get_vision(_target["life"]),
            callback=lambda pos: _avoid_positions.append(pos),
        )

        # What can we see?
    _can_see_positions = []
    fov.fov(life["pos"], sight.get_vision(life), callback=lambda pos: _can_see_positions.append(pos))

    # If there are no visible targets, we could be running away from a position we were attacked from
    _cover_exposed_at = brain.get_flag(life, "cover_exposed_at")

    if _cover_exposed_at:
        _avoid_exposed_cover_positions = set()

        for pos in _cover_exposed_at[:]:
            if tuple(pos[:2]) in _can_see_positions:
                _cover_exposed_at.remove(pos)

                continue

            fov.fov(
                pos,
                int(round(sight.get_vision(life) * 0.25)),
                callback=lambda pos: _avoid_exposed_cover_positions.add(pos),
            )

        for pos in _avoid_exposed_cover_positions:
            if not pos in _avoid_positions:
                _avoid_positions.append(pos)
    else:
        print "Something went wrong"

        return False

        # Overlay the two, finding positions we can see but the target can't
    for pos in _can_see_positions[:]:
        if pos in _avoid_positions:
            _can_see_positions.remove(pos)
            continue

            # Get rid of positions that are too close
        for target_id in targets:
            _target = brain.knows_alife_by_id(life, target_id)

            if numbers.distance(_target["last_seen_at"], pos) < 4:
                _can_see_positions.remove(pos)
                break

                # Now scan for cover to prevent hiding in the open
    for pos in _can_see_positions[:]:
        if chunks.get_chunk(chunks.get_chunk_key_at(pos))["max_z"] == 2:
            _can_see_positions.remove(pos)

    if not _can_see_positions:
        if life["pos"] in _cover_exposed_at:
            _cover_exposed_at.remove(life["pos"])

        return False

    if lfe.find_action(life, [{"action": "dijkstra_move", "goals": _can_see_positions[:]}]):
        return True

    lfe.stop(life)
    lfe.add_action(
        life,
        {
            "action": "dijkstra_move",
            "rolldown": True,
            "zones": _zones,
            "goals": _can_see_positions[:],
            "reason": "escaping",
        },
        200,
    )
Exemple #15
0
def position_to_attack(life, target, engage_distance):
    if lfe.find_action(life, [{"action": "dijkstra_move", "reason": "positioning for attack"}]):
        if not lfe.ticker(life, "attack_position", 4):
            return False

    _target_positions, _zones = combat.get_target_positions_and_zones(life, [target])
    _can_see = alife.sight.can_see_position(life, _target_positions[0], get_path=True)
    _distance = numbers.distance(life["pos"], _target_positions[0])

    if _can_see and len(_can_see) < engage_distance * 0.85:
        if life["path"]:
            lfe.stop(life)
    elif _distance < engage_distance * 0.9:
        _avoid_positions = set()
        _target_area = set()

        for life_id in alife.judgement.get_trusted(life, visible=False, only_recent=True):
            fov.fov(
                LIFE[life_id]["pos"],
                int(round(sight.get_vision(life) * 0.25)),
                callback=lambda pos: _avoid_positions.add(pos),
            )

        fov.fov(
            _target_positions[0], int(round(sight.get_vision(life) * 0.15)), callback=lambda pos: _target_area.add(pos)
        )

        _min_view_distance = int(round(sight.get_vision(life) * 0.25))
        _max_view_distance = int(round(sight.get_vision(life) * 0.5))
        _attack_positions = set(
            zones.dijkstra_map(
                life["pos"],
                _target_positions,
                _zones,
                rolldown=True,
                return_score_in_range=[_min_view_distance, _max_view_distance],
            )
        )

        _attack_positions = _attack_positions - _target_area

        if not _attack_positions:
            return False

        if not lfe.find_action(
            life,
            [
                {
                    "action": "dijkstra_move",
                    "orig_goals": list(_attack_positions),
                    "avoid_positions": list(_avoid_positions),
                }
            ],
        ):
            lfe.stop(life)

            lfe.add_action(
                life,
                {
                    "action": "dijkstra_move",
                    "rolldown": True,
                    "goals": [list(p) for p in random.sample(_attack_positions, len(_attack_positions) / 2)],
                    "orig_goals": list(_attack_positions),
                    "avoid_positions": list(_avoid_positions),
                    "reason": "positioning for attack",
                },
                999,
            )

            return False
    else:
        _can_see_positions = set()
        _target_area = set()
        _avoid_positions = set()

        fov.fov(
            life["pos"], int(round(sight.get_vision(life) * 0.75)), callback=lambda pos: _can_see_positions.add(pos)
        )
        fov.fov(
            _target_positions[0], int(round(sight.get_vision(life) * 0.75)), callback=lambda pos: _target_area.add(pos)
        )

        for life_id in alife.judgement.get_trusted(life, visible=False, only_recent=True):
            _path_dest = lfe.path_dest(LIFE[life_id])

            if not _path_dest:
                continue

            if len(_path_dest) == 2:
                _path_dest = list(_path_dest[:])
                _path_dest.append(LIFE[life_id]["pos"][2])

            fov.fov(_path_dest, 5, callback=lambda pos: _avoid_positions.add(pos))

        _avoid_positions = list(_avoid_positions)
        _sneak_positions = _can_see_positions - _target_area
        _move_positions = zones.dijkstra_map(LIFE[target]["pos"], list(_sneak_positions), _zones, rolldown=True)

        if not _move_positions:
            travel_to_position(life, list(_target_positions[0]))
            return False

        if not lfe.find_action(
            life, [{"action": "dijkstra_move", "orig_goals": _move_positions, "avoid_positions": _avoid_positions}]
        ):
            lfe.stop(life)

            lfe.add_action(
                life,
                {
                    "action": "dijkstra_move",
                    "rolldown": True,
                    "goals": [list(p) for p in _move_positions],
                    "orig_goals": _move_positions,
                    "avoid_positions": _avoid_positions,
                    "reason": "positioning for attack",
                },
                999,
            )

            return False

    return True
Exemple #16
0
def escape(life, targets):
	_target_positions = []
	_avoid_positions = []
	_zones = [zones.get_zone_at_coords(life['pos'])]
	
	if lfe.find_action(life, [{'action': 'dijkstra_move', 'reason': 'escaping'}]):
		if not lfe.ticker(life, 'escaping', 4):
			return False
	
	#What can the targets see?
	for target_id in targets:
		_target = brain.knows_alife_by_id(life, target_id)
		_zone = zones.get_zone_at_coords(_target['last_seen_at'])
		
		if not _zone in _zones:
			_zones.append(_zone)
		
		fov.fov(_target['last_seen_at'], sight.get_vision(_target['life']), callback=lambda pos: _avoid_positions.append(pos))
	
	#What can we see?
	_can_see_positions = []
	fov.fov(life['pos'], sight.get_vision(life), callback=lambda pos: _can_see_positions.append(pos))
	
	#If there are no visible targets, we could be running away from a position we were attacked from
	_cover_exposed_at = brain.get_flag(life, 'cover_exposed_at')
	
	if _cover_exposed_at:
		_avoid_exposed_cover_positions = set()
		
		for pos in _cover_exposed_at[:]:
			if tuple(pos[:2]) in _can_see_positions:
				print 'ok!!!'*20
				_cover_exposed_at.remove(pos)
				continue
			
			fov.fov(pos, int(round(sight.get_vision(life)*.25)), callback=lambda pos: _avoid_exposed_cover_positions.add(pos))
		
		for pos in _avoid_exposed_cover_positions:
			if not pos in _avoid_positions:
				_avoid_positions.append(pos)
	
	#Overlay the two, finding positions we can see but the target can't
	for pos in _can_see_positions[:]:
		if pos in _avoid_positions:
			_can_see_positions.remove(pos)
			continue
	
		#Get rid of positions that are too close
		for target_id in targets:
			_target = brain.knows_alife_by_id(life, target_id)
			
			#TODO: Unhardcode 15
			if numbers.distance(_target['last_seen_at'], pos)<10:
				_can_see_positions.remove(pos)
				break
	
	#Now scan for cover to prevent hiding in the open
	for pos in _can_see_positions[:]:
		if chunks.get_chunk(chunks.get_chunk_key_at(pos))['max_z'] == 2:
			_can_see_positions.remove(pos)
	
	#for target_id in targets:
		#_target = brain.knows_alife_by_id(life, target_id)
		#_target_positions.append(_target['last_seen_at'][:])
		#_zone = zones.get_zone_at_coords(_target['last_seen_at'])
		
		#if not _zone in _zones:
		#	_zones.append(_zone)
		
		#for chunk_key in chunks.get_visible_chunks_from(_target['last_seen_at'], sight.get_vision(_target['life'])):
		#	if chunk_key in _visible_target_chunks:
		#		continue
			
		#	_visible_target_chunks.append(chunk_key)
	
	#for friendly_id in life['seen']:
	#	_chunk_key = lfe.get_current_chunk_id(LIFE[friendly_id])
	#	
	#	if not _chunk_key in _visible_target_chunks:
	#		_visible_target_chunks.append(_chunk_key)
	
	#if not _target_positions:
	#	return False
	
	#TODO: #combat: For lower limit in return_score_in_range, use range of weapon
	#_cover = zones.dijkstra_map(life['pos'],
	#                            _avoid_positions,
	#                            _zones,
	#                            avoid_chunks=[],
	#                            return_score_in_range=[1, 5]) # sight.get_vision(life)
	#_cover = [(c[0], c[1], life['pos'][2]) for c in _cover]
	#if not _cover:
	#	return False
	
	#_zones = [zones.get_zone_at_coords(life['pos'])]
	#for _pos in _cover:
	#	_zone = zones.get_zone_at_coords(_pos)
		
	#	if not _zone in _zones:
	#		_zones.append(_zone)
	
	if not _can_see_positions:
		return False
	
	if lfe.find_action(life, [{'action': 'dijkstra_move', 'goals': _can_see_positions[:]}]):
		return True
	
	lfe.stop(life)
	lfe.add_action(life, {'action': 'dijkstra_move',
	                      'rolldown': True,
	                      'zones': _zones,
	                      'goals': _can_see_positions[:],
	                      'reason': 'escaping'},
	               999)