Exemple #1
0
    def test_init(self):
        with self.assertRaises(IOError):
            file = File(Path.clean(self.data_path, 'file.txt'))

        file = File()
        self.assertEqual(file.lines, [])
        self.assertEqual(file.load_path, None)

        with self.assertRaises(IOError):
            file.write_to_path()

        file_path = Path.clean(self.data_path, 'file1.txt')
        file = File(file_path)
        self.assertEqual(file.lines[0], "This is a test file")
        self.assertEqual(file.lines[4], "line 5")
        self.assertEqual(file.lines[6], "end of testing file")
        with self.assertRaises(IndexError):
            file.lines[7]

        self.assertEqual(file.load_path, file_path)

        file_path = Path.clean(self.data_path, 'small_file.txt')
        file = File(file_path)
        self.assertEqual(file.lines, ['Small file', '  Very small  ', ''])

        file_path = Path.clean(self.data_path, 'empty.txt')
        file = File(file_path)
        self.assertEqual(file.lines, [])

        file_path = Path.clean(self.data_path, 'almost_empty.txt')
        file = File(file_path)  #this file contains: line 1: '\n' line 2: ''
        self.assertEqual(file.lines, [''])
def convert_phonopy_atoms_to_structure(phonopy_atoms_structure):
    """
	Converts phonopy's representation of a structure to an instance of Structure.
	"""

    temporary_write_path = Path.get_temporary_path()

    Path.validate_does_not_exist(temporary_write_path)
    Path.validate_writeable(temporary_write_path)

    write_vasp(temporary_write_path, phonopy_atoms_structure)

    species_list = convert_phonopy_symbols_to_unique_species_list(
        phonopy_atoms_structure.symbols)

    structure_poscar_file = File(temporary_write_path)
    structure_poscar_file.insert(
        5, " ".join(species_list))  #phonopy uses bad poscar format
    structure_poscar_file.write_to_path()

    final_structure = Structure(temporary_write_path)

    Path.remove(temporary_write_path)

    Structure.validate(final_structure)

    return final_structure
Exemple #3
0
    def test_write_to_path(self):
        file_path = Path.clean(self.data_path, 'small_file.txt')
        file = File(file_path)

        file[0] += " for line 0"
        file[3] = "line 3"
        file += ""
        file += "here\nand here"
        file += ""

        self.assertEqual(file.lines, [
            'Small file for line 0', '  Very small  ', '', 'line 3', '',
            'here', 'and here', ''
        ])

        file.write_to_path(
            Path.clean(self.data_path, 'small_file_ammended.txt'))

        file_2 = File(Path.clean(self.data_path, 'small_file_ammended.txt'))

        file_2[2] = "no more"
        file_2.write_to_path()

        file_3 = File(Path.clean(self.data_path, 'small_file_ammended.txt'))

        self.assertEqual(file_3.lines, [
            'Small file for line 0', '  Very small  ', 'no more', 'line 3', '',
            'here', 'and here', ''
        ])
 def write_error_to_path(calculation_path, error_string):
     error_path = Path.join(
         calculation_path,
         QueueAdapter.error_path + "_" + su.get_time_stamp_string())
     file = File()
     file[0] = error_string
     file.write_to_path(error_path)
	def print_eigenvalues_to_file(self, file_path):
		file = File()

		for i, eigen_pair in enumerate(self.get_sorted_hessian_eigen_pairs_list()):
			file += "u_" + str(i+1) + ": " + str(eigen_pair.eigenvalue)

		file.write_to_path(file_path)
def write_born_file(initial_structure, phonopy_inputs, dielectric_tensor,
                    born_effective_charge_tensor, file_path):
    """
	Creates the born file that phonopy needs for the non-analytical correction to be applied.
	"""

    phonon = get_initialized_phononopy_instance(initial_structure,
                                                phonopy_inputs)

    symm = Symmetry(cell=phonon.get_primitive(),
                    symprec=phonopy_inputs['symprec'])

    independent_atom_indices_list = symm.get_independent_atoms()

    born_file = File()

    born_file += "14.400"

    flat_dielectric_list = misc.flatten_multi_dimensional_list(
        dielectric_tensor)

    born_file += " ".join(str(component) for component in flat_dielectric_list)

    print "Independent atom indices:", independent_atom_indices_list

    for atomic_bec_index in independent_atom_indices_list:
        atomic_bec = born_effective_charge_tensor[atomic_bec_index]

        flat_atomic_bec = misc.flatten_multi_dimensional_list(atomic_bec)

        born_file += " ".join(str(component) for component in flat_atomic_bec)

    born_file.write_to_path(file_path)
	def print_eigen_components_to_file(self, file_path):
		file = File()

		for i, eigen_pair in enumerate(self.get_sorted_hessian_eigen_pairs_list()):
			file += "Index: " + str(i) + "\n" + str(eigen_pair)
			file += ''

		file.write_to_path(file_path)
    def write_parent_paths_to_file(self):
        if self.parent_paths_list:
            file = File()

            for path in self.parent_paths_list:
                file += path

            file.write_to_path(self.get_extended_path(".parent_paths"))
    def write_id_string_to_path(calculation_path, id_string):
        """
		Writes id_string to the first line of the id file at id_path
		"""

        id_path = Path.join(calculation_path, QueueAdapter.id_path)
        file = File()
        file[0] = id_string
        file.write_to_path(id_path)
Exemple #10
0
    def print_selected_uniques_to_file(self, file_path):
        file = File()

        for unique_data_triplet in self.get_sorted_unique_relaxation_data_list(
        ):
            file += "Energy: " + str(
                unique_data_triplet[0].get_final_energy(per_atom=False))
            file += "Final Chromosome:"
            file += misc.get_formatted_chromosome_string(
                unique_data_triplet[2])
            file += ""

        file.write_to_path(file_path)
	def print_mode_effective_charge_vectors_to_file(self, file_path, reference_structure):
		file = File()

		f = su.pad_decimal_number_to_fixed_character_length
		rnd = 4
		pad = 7

		for i, eigen_pair in enumerate(self.get_sorted_hessian_eigen_pairs_list()):
			index_string = str(i+1)

			while len(index_string) < 3:
				index_string += ' '

			file += "u_" + index_string + '   ' + f(eigen_pair.eigenvalue, 2, pad) + '      ' + " ".join(f(x, rnd, pad) for x in self.get_mode_effective_charge_vector(eigen_pair.eigenvector, reference_structure))
			#file += ''

		file.write_to_path(file_path)
Exemple #12
0
    def print_status_to_file(self, file_path):
        print "in print_status_to_file"

        file = File()

        spg_symprecs = [0.1, 0.01, 0.001]

        file += "Complete: " + str(self.complete)
        file += ""

        reference_energy = self.reference_completed_vasp_relaxation_run.get_final_energy(
            per_atom=False)
        eigen_structure = EigenStructure(
            reference_structure=self.reference_structure, hessian=self.hessian)
        for i, vasp_relaxation in enumerate(self.vasp_relaxations_list):

            mx = len(self.vasp_relaxations_list)
            if (i % (mx / 10) == 0):
                mx = self.max_minima if self.max_minima else len(
                    self.eigen_chromosomes_list)
                print str(i) + "/" + str(mx)

            file += '-' * 38 + " Structure Guess " + str(i) + ' ' + '-' * 38
            file += ''

            if vasp_relaxation.complete:
                eigen_structure.set_strains_and_amplitudes_from_distorted_structure(
                    vasp_relaxation.final_structure)

                eigen_structure_list_representation = eigen_structure.get_list_representation(
                )

                self.completed_relaxations_data_list.append([
                    vasp_relaxation, self.eigen_chromosomes_list[i],
                    eigen_structure_list_representation
                ])

                file += "DFT Energy Change        " + str(
                    vasp_relaxation.get_final_energy(per_atom=False) -
                    reference_energy)
                file += "Space Group " + " ".join([
                    vasp_relaxation.final_structure.get_spacegroup_string(
                        symprec) for symprec in spg_symprecs
                ])
                file += "Guessed Energy Change  " + str(
                    self.predicted_energies_list[i])
                file += "Guessed Chromosome"
                file += misc.get_formatted_chromosome_string(
                    self.eigen_chromosomes_list[i])
                file += "Final Chromosome"

                file += misc.get_formatted_chromosome_string(
                    eigen_structure_list_representation)

            else:
                file += "Guessed Energy Change  " + str(
                    self.predicted_energies_list[i])
                file += "Guessed Chromosome"
                file += misc.get_formatted_chromosome_string(
                    self.eigen_chromosomes_list[i])
                file += "Incomplete"
            file += ''

        file.write_to_path(file_path)

        print "out of print_status_to_file\n"
Exemple #13
0
    def __init__(self,
                 path,
                 reference_structure,
                 reference_completed_vasp_relaxation_run,
                 hessian,
                 vasp_relaxation_inputs_dictionary,
                 eigen_chromosome_energy_pairs_file_path,
                 log_base_path,
                 max_minima=None):
        """
		eigen_chromosome_energy_pairs_list should look like [[predicted energy change, guessed eigen_chromosome], [...],...]

		vasp_relaxation_inputs_dictionary should look like:

		vasp_relaxation_inputs_dictionary = 
		{
			'external_relaxation_count': 4,
			'kpoint_schemes_list': ['Gamma'],
			'kpoint_subdivisions_lists': [[1, 1, 1], [1, 1, 2], [2, 2, 4]],
			'submission_script_modification_keys_list': ['100', 'standard', 'standard_gamma'], #optional - will default to whatever queue adapter gives
			'submission_node_count_list': [1, 2],
			'ediff': [0.001, 0.00001, 0.0000001],
			'encut': [200, 400, 600, 800],
			'isif' : [5, 2, 3]
			#any other incar parameters with value as a list
		}

		max_minima controls how many minima are relaxed. If None, all are relaxed
		"""

        minima_file = File(eigen_chromosome_energy_pairs_file_path)

        eigen_chromosome_energy_pairs_list = [
        ]  #[[predicted_energy_difference_1, [e1, e2, e3, e4, ...]], [predicted_energy_difference_2, [e1, ...]]]

        for line in minima_file:
            energy_difference = float((line.strip()).split(',')[0])
            eigen_chromosome = [
                float(x) for x in (line.strip()).split(',')[1].split(' ')[1:]
            ]

            eigen_chromosome_energy_pairs_list.append(
                [energy_difference, eigen_chromosome])

        self.path = path
        self.reference_structure = reference_structure
        self.reference_completed_vasp_relaxation_run = reference_completed_vasp_relaxation_run
        self.hessian = hessian
        self.eigen_pairs_list = hessian.get_sorted_hessian_eigen_pairs_list()
        self.vasp_relaxation_inputs_dictionary = copy.deepcopy(
            vasp_relaxation_inputs_dictionary)
        self.max_minima = max_minima

        sorted_eigen_chromosome_energy_pairs_list = sorted(
            eigen_chromosome_energy_pairs_list, key=lambda x: x[0])

        guesses_log_path = Path.join(log_base_path, 'output_guesses_log')
        if not Path.exists(guesses_log_path):
            file = File()

            sorted_hessian_eigen_pairs_list = hessian.get_sorted_hessian_eigen_pairs_list(
            )
            total = len(sorted_eigen_chromosome_energy_pairs_list)
            eigen_structure = EigenStructure(
                reference_structure=self.reference_structure,
                hessian=self.hessian)

            for i, eigen_chromosome_energy_pair in enumerate(
                    sorted_eigen_chromosome_energy_pairs_list):
                print "Writing guess log " + str(i + 1) + " of " + str(total)
                eigen_structure.set_eigen_chromosome(
                    eigen_chromosome_energy_pair[1])

                initial_structure = eigen_structure.get_distorted_structure()

                spg = initial_structure.get_spacegroup_string(0.001)

                file += str(eigen_chromosome_energy_pair[0]
                            ) + '   ' + misc.get_formatted_chromosome_string(
                                eigen_chromosome_energy_pair[1]) + '  ' + spg

            file.write_to_path(guesses_log_path)

        full_guesses_list_file = File(
            guesses_log_path
        )  #lines look like   -0.550084   [ 0.000  0.000 -0.009  0.000  0.000  0.000      0.605  0.605  0.000  0.000  0.000  0.000  0.000  0.000 ]  Amm2 (38)

        unique_guesses_file = File()

        final_pairs_list = []
        energies_list = []
        seen_before_dictionary = {}
        print 'Analyzing unique pairs in minima relax'
        for line in full_guesses_list_file:
            energy = float(su.remove_extra_spaces(line.split('[')[0]))
            chromosome = [
                float(x) for x in su.remove_extra_spaces(
                    line[line.find('[') + 1:line.find(']')]).split(' ')
            ]
            spg = su.remove_extra_spaces(line.split(']')[1])

            key = str(energy) + '_' + spg

            if key in seen_before_dictionary:
                continue
            else:
                seen_before_dictionary[key] = True
                eigen_chromosome_energy_pair = [energy, chromosome]
                energies_list.append(eigen_chromosome_energy_pair[0])
                final_pairs_list.append(eigen_chromosome_energy_pair)

                unique_guesses_file += str(
                    eigen_chromosome_energy_pair[0]
                ) + '   ' + misc.get_formatted_chromosome_string(
                    eigen_chromosome_energy_pair[1]) + '  ' + spg

        unique_guesses_file.write_to_path(
            Path.join(log_base_path, 'output_unique_guesses_log'))

        # #remove redundant energies from list
        # final_pairs_list = []
        # energies_list = []
        # for eigen_chromosome_energy_pair in sorted_eigen_chromosome_energy_pairs_list:
        # 	if eigen_chromosome_energy_pair[0] in energies_list:
        # 		continue
        # 	else:
        # 		energies_list.append(eigen_chromosome_energy_pair[0])
        # 		final_pairs_list.append(eigen_chromosome_energy_pair)

        # print "Final pairs list: "
        # print final_pairs_list

        self.predicted_energies_list = [
            eigen_chromosome_energy_pair[0]
            for eigen_chromosome_energy_pair in final_pairs_list
        ]
        self.eigen_chromosomes_list = [
            eigen_chromosome_energy_pair[1]
            for eigen_chromosome_energy_pair in final_pairs_list
        ]

        self.completed_relaxations_data_list = [
        ]  #list of lists with each component like [relaxation, initial chromosome, final chromosome]

        self.vasp_relaxations_list = None

        Path.make(path)

        print "Initializing minima relaxation runs"
        self.initialize_relaxation_list()
 def write_structure_creation_id_string_to_file(self):
     if self.structure_creation_id_string:
         file = File()
         file += self.structure_creation_id_string
         file.write_to_path(self.get_structure_creation_id_file_path())
def run_misfit_strain(path, misfit_strain, input_dictionary,
                      initial_relaxation_input_dictionary, dfpt_incar_settings,
                      derivative_evaluation_vasp_run_inputs_dictionary,
                      minima_relaxation_input_dictionary,
                      epitaxial_relaxation_input_dictionary):

    Path.make(path)
    guessed_minima_data_path = Path.join(path, 'guessed_chromosomes')

    species_list = input_dictionary['species_list']
    reference_lattice_constant = input_dictionary['reference_lattice_constant']
    Nx = input_dictionary['supercell_dimensions_list'][0]
    Ny = input_dictionary['supercell_dimensions_list'][1]
    Nz = input_dictionary['supercell_dimensions_list'][2]
    displacement_finite_differences_step_size = input_dictionary[
        'displacement_finite_differences_step_size']
    perturbation_magnitudes_dictionary = input_dictionary[
        'perturbation_magnitudes_dictionary']

    a = reference_lattice_constant * (1.0 + misfit_strain)

    initial_structure = Perovskite(
        supercell_dimensions=[Nx, Ny, Nz],
        lattice=[[a * Nx, 0.0, 0.0], [0.0, a * Ny, 0.0],
                 [
                     0.0, 0.0, reference_lattice_constant * Nz *
                     (1.0 + 0.3 * (1.0 - (a / reference_lattice_constant)))
                 ]],
        species_list=species_list)
    relaxation = VaspRelaxation(
        path=Path.join(path, 'relaxation'),
        initial_structure=initial_structure,
        input_dictionary=initial_relaxation_input_dictionary)

    if not relaxation.complete:
        relaxation.update()
        return False

    relaxed_structure = relaxation.final_structure

    relaxed_structure_path = Path.join(path, 'output_relaxed_structure')
    relaxed_structure.to_poscar_file_path(relaxed_structure_path)

    force_calculation_path = Path.join(path, 'dfpt_force_calculation')

    kpoints = Kpoints(scheme_string=kpoint_scheme,
                      subdivisions_list=kpoint_subdivisions_list)
    incar = IncarMaker.get_dfpt_hessian_incar(dfpt_incar_settings)
    input_set = VaspInputSet(relaxed_structure,
                             kpoints,
                             incar,
                             auto_change_lreal=False,
                             auto_change_npar=False)
    input_set.incar['lepsilon'] = True

    dfpt_force_run = VaspRun(path=force_calculation_path, input_set=input_set)

    if not dfpt_force_run.complete:
        dfpt_force_run.update()
        return False

    hessian = Hessian(dfpt_force_run.outcar)

    if input_dictionary['write_hessian_data']:
        hessian.print_eigenvalues_to_file(
            Path.join(path, 'output_eigen_values'))
        hessian.print_eigen_components_to_file(
            Path.join(path, 'output_eigen_components'))
        hessian.print_mode_effective_charge_vectors_to_file(
            Path.join(path, 'output_mode_effective_charge_vectors'),
            relaxed_structure)

        eigen_structure = EigenStructure(reference_structure=relaxed_structure,
                                         hessian=hessian)

        mode_structures_path = Path.join(path, 'mode_rendered_structures')
        Path.make(mode_structures_path)

        mode_charge_file = File(
            Path.join(path, 'output_mode_effective_charge_vectors'))

        sorted_eigen_pairs = hessian.get_sorted_hessian_eigen_pairs_list()
        for i, structure in enumerate(
                eigen_structure.get_mode_distorted_structures_list(
                    amplitude=0.6)):
            if i > 30:
                break
            structure.to_poscar_file_path(
                Path.join(
                    mode_structures_path, 'u' + str(i + 1) + '_' +
                    str(round(sorted_eigen_pairs[i].eigenvalue, 2)) + '.vasp'))

            structure.lattice = Lattice([[8.0, 0.0, 0.0], [0.0, 8.0, 0.0],
                                         [0.0, 0.0, 8.0]])

            mode_charge_file[i] += '    ' + structure.get_spacegroup_string(
                symprec=0.2) + '  ' + structure.get_spacegroup_string(
                    symprec=0.1) + '  ' + structure.get_spacegroup_string(
                        symprec=0.001)

        mode_charge_file.write_to_path()
    #sys.exit()

    ################################################### random structure searcher
    if True:
        rand_path = Path.join(path, 'random_trials')
        Path.make(rand_path)

        num_guesses = 1
        num_modes = 12
        max_amplitude = 0.6

        if misfit_strain == 0.02:
            eigen_structure = EigenStructure(
                reference_structure=relaxed_structure, hessian=hessian)

            for i in range(num_guesses):
                trial_path = Path.join(rand_path, str(i))

                if not Path.exists(trial_path):
                    initial_structure_trial = eigen_structure.get_random_structure(
                        mode_count_cutoff=num_modes,
                        max_amplitude=max_amplitude)
                    trial_relaxation = VaspRelaxation(
                        path=trial_path,
                        initial_structure=initial_structure_trial,
                        input_dictionary=minima_relaxation_input_dictionary)
                else:
                    trial_relaxation = VaspRelaxation(path=trial_path)

                print "Updating random trial relaxation at " + trial_relaxation.path + "  Status is " + trial_relaxation.get_status_string(
                )
                trial_relaxation.update()

                if trial_relaxation.complete:
                    print "Trial " + str(i)
                    print trial_relaxation.get_data_dictionary()

        return None
    ###################################################

    if not Path.exists(guessed_minima_data_path):
        variable_specialty_points_dictionary = input_dictionary[
            'variable_specialty_points_dictionary_set'][
                misfit_strain] if input_dictionary.has_key(
                    misfit_strain) else {}

        derivative_evaluation_path = Path.join(
            path, 'expansion_coefficient_calculations')
        derivative_evaluator = DerivativeEvaluator(
            path=derivative_evaluation_path,
            reference_structure=relaxed_structure,
            hessian=hessian,
            reference_completed_vasp_relaxation_run=relaxation,
            vasp_run_inputs_dictionary=
            derivative_evaluation_vasp_run_inputs_dictionary,
            perturbation_magnitudes_dictionary=
            perturbation_magnitudes_dictionary,
            displacement_finite_differences_step_size=
            displacement_finite_differences_step_size,
            status_file_path=Path.join(path, 'output_derivative_plot_data'),
            variable_specialty_points_dictionary=
            variable_specialty_points_dictionary,
            max_displacement_variables=input_dictionary[
                'max_displacement_variables'])

        derivative_evaluator.update()

    else:
        minima_path = Path.join(path, 'minima_relaxations')

        minima_relaxer = MinimaRelaxer(
            path=minima_path,
            reference_structure=relaxed_structure,
            reference_completed_vasp_relaxation_run=relaxation,
            hessian=hessian,
            vasp_relaxation_inputs_dictionary=
            minima_relaxation_input_dictionary,
            eigen_chromosome_energy_pairs_file_path=guessed_minima_data_path,
            log_base_path=path,
            max_minima=input_dictionary['max_minima'])

        minima_relaxer.update()
        minima_relaxer.print_status_to_file(
            Path.join(path, 'output_minima_relaxations_status'))

        if minima_relaxer.complete:
            print "Minima relaxer complete: sorting the relaxations to find the lowest energy structure."
            #minima_relaxer.print_selected_uniques_to_file(file_path=Path.join(path, 'output_selected_unique_minima_relaxations'))
            sorted_uniques = minima_relaxer.get_sorted_unique_relaxation_data_list(
            )

            return sorted_uniques
    def update(self):

        file = File()

        file += ''.join(self.reference_structure.get_species_list(
        )) + '3' + ' a=' + str(
            round(self.reference_structure.lattice[0][0] / 2.0, 2)
        ) + 'A ediff=' + str(
            self.vasp_run_inputs_dictionary['ediff']) + ' encut=' + str(
                self.vasp_run_inputs_dictionary['encut']) + ' ' + 'x'.join(
                    str(k) for k in
                    self.vasp_run_inputs_dictionary['kpoint_subdivisions_list']
                ) + self.vasp_run_inputs_dictionary['kpoint_scheme'][
                    0] + ' disp_step=' + str(
                        self.displacement_finite_differences_step_size) + 'A'

        Path.make(self.path)

        perturbation_magnitude_lists_dictionary = {
            'displacement': [
                self.perturbation_magnitudes_dictionary['displacement'] * i
                for i in range(0, 14)
            ],
            'strain': [
                self.perturbation_magnitudes_dictionary['strain'] * i
                for i in range(-15, 15 + 1)
            ]
        }

        total_variables_list = self.displacement_variables_list + self.strain_variables_list

        #u^2, u^4, and e^2 coefficients
        for variable in total_variables_list:
            variable_path = self.get_extended_path(str(variable))
            Path.make(variable_path)

            print str(variable)

            file += str(variable) + ' Energy'

            perturbation_magnitudes_list = copy.deepcopy(
                perturbation_magnitude_lists_dictionary[variable.type_string])

            if str(variable) in ['e_4', 'e_5']:
                perturbation_magnitudes_list = [-0.02, -0.01, 0.0, 0.01, 0.02]

            if str(variable) in self.variable_specialty_points_dictionary:
                for additional_perturbation_magnitude in self.variable_specialty_points_dictionary[
                        str(variable)]:
                    perturbation_magnitudes_list.append(
                        additional_perturbation_magnitude)

            perturbation_magnitudes_list = sorted(perturbation_magnitudes_list)

            print "Pert list is " + str(perturbation_magnitudes_list)

            energies_list = []
            for perturbation_magnitude in perturbation_magnitudes_list:
                eigen_chromosome = [0.0] * (
                    3 * self.reference_structure.site_count)

                if variable.type_string == 'displacement':
                    add_index = 6
                else:
                    add_index = 0

                eigen_chromosome[variable.index +
                                 add_index] = perturbation_magnitude

                energies_list.append(
                    self.get_energy_of_eigen_chromosome(
                        path=Path.join(
                            variable_path,
                            str(perturbation_magnitude).replace('-', 'n')),
                        eigen_chromosome=eigen_chromosome))

            if variable.type_string == 'displacement':
                #Due to centrosymmetry, we know the negative chromosomes have equal energy
                for i in range(len(energies_list) - 1, 0, -1):
                    file += str(
                        -1.0 * perturbation_magnitudes_list[i]) + " " + str(
                            energies_list[i])

                #file += "0.0 " + str(self.reference_completed_vasp_relaxation_run.get_final_energy(per_atom=False))

            for i in range(len(energies_list)):
                file += str(perturbation_magnitudes_list[i]) + " " + str(
                    energies_list[i])

            file += ''

        #e*u^2 terms
        for strain_variable in self.strain_variables_list:
            for m, displacement_variable_1 in enumerate(
                    self.displacement_variables_list):
                for j in range(m, len(self.displacement_variables_list)):
                    if not j == m:
                        continue

                    if str(strain_variable) in [
                            'e_4', 'e_5'
                    ]:  ##########################################temp remove!!!!!!!!!!!!
                        continue

                    displacement_variable_2 = self.displacement_variables_list[
                        j]

                    print str(strain_variable) + ' d^2E/d' + str(
                        displacement_variable_1) + 'd' + str(
                            displacement_variable_2)

                    file += str(strain_variable) + ' d^2E/d' + str(
                        displacement_variable_1) + 'd' + str(
                            displacement_variable_2)

                    path = self.get_extended_path(
                        str(strain_variable) + "_" +
                        str(displacement_variable_1) + "_" +
                        str(displacement_variable_2))
                    Path.make(path)

                    for i in range(-3, 4):
                        strain = i * 0.005  #self.perturbation_magnitudes_dictionary['strain']*0.5

                        calculation_path = Path.join(
                            path,
                            str(strain).replace('-', 'n'))

                        eigen_chromosome = [0.0] * (
                            3 * self.reference_structure.site_count)
                        eigen_chromosome[strain_variable.index] = strain

                        structure = self.get_distorted_structure_from_eigen_chromosome(
                            eigen_chromosome)

                        file += str(strain) + " " + str(
                            self.get_displacement_second_derivative(
                                calculation_path, structure,
                                displacement_variable_1.index,
                                displacement_variable_2.index))

                    file += ''

        file.write_to_path(self.status_file_path)
        relaxed_structure)

    eigen_structure = EigenStructure(reference_structure=relaxed_structure,
                                     hessian=hessian)

    mode_structures_path = Path.join(path, 'mode_rendered_structures')
    Path.make(mode_structures_path)

    mode_charge_file = File(
        Path.join(path, 'output_mode_effective_charge_vectors'))

    sorted_eigen_pairs = hessian.get_sorted_hessian_eigen_pairs_list()
    for i, structure in enumerate(
            eigen_structure.get_mode_distorted_structures_list(amplitude=0.6)):
        if i > 30:
            break
        structure.to_poscar_file_path(
            Path.join(
                mode_structures_path, 'u' + str(i + 1) + '_' +
                str(round(sorted_eigen_pairs[i].eigenvalue, 2)) + '.vasp'))

        structure.lattice = Lattice([[8.0, 0.0, 0.0], [0.0, 8.0, 0.0],
                                     [0.0, 0.0, 8.0]])

        mode_charge_file[i] += '    ' + structure.get_spacegroup_string(
            symprec=0.2) + '  ' + structure.get_spacegroup_string(
                symprec=0.1) + '  ' + structure.get_spacegroup_string(
                    symprec=0.001)

        mode_charge_file.write_to_path()