def get_h2o_circuits_to_compile(): set_seeds() circuit = get_uccsd_circuit('H2O') circuit = optimize_circuit(circuit) coupling_list = get_nearest_neighbor_coupling_list(2, 5) circuit = optimize_circuit(circuit, coupling_list) # layout is 0 2 4 6 8 # 1 3 5 7 9 class Blocking1(object): blocks = [{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9}] connected_qubit_pairs_list = [[(0, 1), (1, 3), (2, 3), (0, 2)], [(0, 1), (1, 3), (2, 3), (0, 2)], [(0, 1)]] class Blocking2(object): blocks = [{0, 1}, {2, 3, 4, 5}, {6, 7, 8, 9}] connected_qubit_pairs_list = [[(0, 1)], [(0, 1), (1, 3), (2, 3), (0, 2)], [(0, 1), (1, 3), (2, 3), (0, 2)]] blockings = [Blocking1, Blocking2] slice_circuits_list = _get_slice_circuits_list(circuit, blockings) return _get_circuits_to_compile(slice_circuits_list)
def _tests(): """Run tests on the module. """ coupling_list = get_nearest_neighbor_coupling_list(2, 2) theta = [np.random.random() for _ in range(8)] circuit = optimize_circuit(get_uccsd_circuit('LiH', theta), coupling_list) slices = get_uccsd_slices(circuit, granularity=2) grouped_slices = get_uccsd_slices(circuit, granularity=2, dependence_grouping=True) angle_count = 0 for uccsdslice in grouped_slices: print(uccsdslice.angles) print(uccsdslice.circuit) for angle in uccsdslice.angles: assert angle == slices[angle_count].angles[0] angle_count += 1 print("grouped_slices_count: {}".format(len(grouped_slices))) assert angle_count == 40
QUBIT6_MPA = get_maxA(6, NUM_STATES, QUBIT6_CQP) GRAPE_QUBIT6_CONFIG = { "H0": QUBIT6_H0, "Hops": QUBIT6_HOPS, "Hnames": QUBIT6_HNAMES, "states_concerned_list": QUBIT6_SCL, "reg_coeffs": REG_COEFFS, "maxA": QUBIT6_MPA, } ### UCCSD MOLECULE CONSTANTS ### # H2 UCCSD_H2_THETA = [5.239368082827368, 1.5290813407594008, 4.701843728963671] UCCSD_H2_FULL_CIRCUIT = optimize_circuit( get_uccsd_circuit("H2", UCCSD_H2_THETA), QUBIT2_CQP) UCCSD_H2_SLICES = get_uccsd_slices( UCCSD_H2_FULL_CIRCUIT, granularity=SLICE_GRANULARITY, dependence_grouping=SLICE_DEPENDENCE_GROUPING) # LiH UCCSD_LIH_THETA = [ 0.86203, 3.8037, 3.3223, 1.766, 1.0846, 1.4558, 1.0592, 0.091974 ] UCCSD_LIH_FULL_CIRCUIT = optimize_circuit( get_uccsd_circuit("LiH", UCCSD_LIH_THETA), QUBIT4_CQP) UCCSD_LIH_SLICES = get_uccsd_slices( UCCSD_LIH_FULL_CIRCUIT, granularity=SLICE_GRANULARITY, dependence_grouping=SLICE_DEPENDENCE_GROUPING)
convergence = {'rate':0.01, 'max_iterations': max_iterations, 'conv_target':1e-3, 'learning_rate_decay':decay, 'min_grad': 1e-12, 'update_step': 20} reg_coeffs = {} N = 4 connected_qubit_pairs = util.get_nearest_neighbor_coupling_list(2, 2, directed=False) H0 = np.zeros((d ** N, d ** N)) Hops, Hnames = hamiltonian.get_Hops_and_Hnames(N, d, connected_qubit_pairs) states_concerned_list = hamiltonian.get_full_states_concerned_list(N, d) maxA = hamiltonian.get_maxA(N, d, connected_qubit_pairs) circuit = uccsd.get_uccsd_circuit('LiH') slices = uccsd.get_uccsd_slices(circuit, granularity=1) slices = [slice for slice in slices if not slice.parameterized] def binary_search_for_shortest_pulse_time(min_time, max_time, tolerance=1): """Search between [min_time, max_time] up to 1ns tolerance. Assumes 20 steps per ns.""" min_steps, max_steps = min_time * 20, max_time * 20 while min_steps + 20 * tolerance < max_steps: # just estimate to +- 1ns mid_steps = int((min_steps + max_steps) / 2) total_time = mid_steps / 20.0 print('\n\ntrying total_time: %s for unitary of size %s' % (str(total_time), str(U.shape))) SS = Grape(H0, Hops, Hnames, U, total_time, mid_steps, states_concerned_list, convergence, reg_coeffs=reg_coeffs,
use_gpu=False, sparse_H=False, method='Adam', maxA=maxA, show_plots=False, file_name=file_name, data_path=data_path) if SS.l < SS.conv.conv_target: # if converged, search lower half max_steps = mid_steps else: min_steps = mid_steps return mid_steps / 20 nah_circuit = uccsd.get_uccsd_circuit('NaH') nah_circuit = util.circuitutil.optimize_circuit(nah_circuit) coupling_list = util.circuitutil.get_nearest_neighbor_coupling_list(2, 4) nah_circuit = util.circuitutil.optimize_circuit(nah_circuit, coupling_list) from qiskit import QuantumCircuit, QuantumRegister from copy import deepcopy def indices(gate): return [qarg[1] for qarg in gate.qargs] def gate_block_index(gate, blocking): if len(indices(gate)) == 1: return [indices(gate)[0] in grouping
total_time = mid_steps / 20.0 print('\n\ntrying total_time: %s for unitary of size %s' % (str(total_time), str(U.shape))) SS = Grape(H0, Hops, Hnames, U, total_time, mid_steps, states_concerned_list, convergence, reg_coeffs=reg_coeffs, use_gpu=False, sparse_H=False, method='Adam', maxA=maxA, show_plots=False, file_name=file_name, data_path=data_path) if SS.l < SS.conv.conv_target: # if converged, search lower half max_steps = mid_steps else: min_steps = mid_steps return mid_steps / 20 beh2_circuit = uccsd.get_uccsd_circuit('BeH2') beh2_circuit = util.circuitutil.optimize_circuit(beh2_circuit) coupling_list = util.circuitutil.get_nearest_neighbor_coupling_list(2, 4) beh2_circuit = util.circuitutil.optimize_circuit(beh2_circuit, coupling_list) from qiskit import QuantumCircuit, QuantumRegister from copy import deepcopy def indices(gate): return [qarg[1] for qarg in gate.qargs] def gate_block_index(gate, blocking): if len(indices(gate)) == 1:
# Define convergence parameters and penalties. convergence = {'rate': 2e-2, 'conv_target': 1e-3, 'max_iterations': 1e3, 'learning_rate_decay': 1e3} reg_coeffs = {} use_gpu = False sparse_H = False show_plots = False method = 'ADAM' # Steps per nanosecond and nanoseconds per step spn = 20.0 nps = 1 / spn # Get slices to perform qoc on. The initial angle of each RZ # gate does not matter. theta = UCCSD_LIH_THETA circuit = optimize_circuit(get_uccsd_circuit('LiH', theta), connected_qubit_pairs) uccsd_slices = get_uccsd_slices(circuit, granularity=SLICE_GRANULARITY, dependence_grouping=True) # https://ark.intel.com/products/91754/Intel-Xeon-Processor-E5-2680-v4-35M-Cache-2-40-GHz- BROADWELL_CORE_COUNT = 14 ### MAIN ### def main(): # Handle CLI. parser = argparse.ArgumentParser() parser.add_argument("--angle-start", type=float, default=0.0, help="the " "inclusive lower bound of angles to optimize the "
STATES_CONCERNED_LIST = get_full_states_concerned_list(NUM_QUBITS, NUM_STATES) MAX_AMPLITUDE = get_maxA(NUM_QUBITS, NUM_STATES, CONNECTED_QUBIT_PAIRS) METHOD = 'ADAM' MAX_GRAPE_ITERATIONS = 1e3 DECAY = 1e3 REG_COEFFS = {} USE_GPU = False SPARSE_H = False SHOW_PLOTS = False # Wave steps per nanosecond of pulse time. SPN = 20 # Get slices and information. SLICE_GRANULARITY = 2 UCCSD_LIH_FULL_CIRCUIT = optimize_circuit( get_uccsd_circuit('LiH', UCCSD_LIH_THETA), CONNECTED_QUBIT_PAIRS) UCCSD_LIH_SLICES = get_uccsd_slices(UCCSD_LIH_FULL_CIRCUIT, granularity=SLICE_GRANULARITY, dependence_grouping=True) # Hyperparmeter optimization constants and search space. MAX_HPO_ITERATIONS = 50 LR_LB = 1e-5 LR_UB = 1 DECAY_LB = 1 DECAY_UB = 1e5 ### OBJECTS ### class ProcessState(object):