Exemple #1
0
    def __init__(self, ndf, nc, img_size):
        super(Discriminator, self).__init__()

        down_times = int(np.log2(img_size))
        assert 2**down_times == img_size

        max_nc = 256

        self.main = nn.Sequential(
            nn.utils.spectral_norm(nn.Conv2d(nc, ndf, 4, 2, 1, bias=False)),
            nn.LeakyReLU(0.2, inplace=True),
            # nn.InstanceNorm2d(ndf, affine=True)
        )

        size = int(img_size / 2)
        ndf_tmp = ndf

        for di in range(down_times):
            if size == 2:
                break
            nc_out = min(2 * ndf_tmp, max_nc)
            self.main.add_module(
                "disc_down_" + str(size),
                nn.Sequential(
                    nn.utils.spectral_norm(
                        nn.Conv2d(ndf_tmp, nc_out, 4, 2, 1, bias=False)),
                    nn.LeakyReLU(0.2, inplace=True), nn.BatchNorm2d(nc_out),
                    nn.utils.spectral_norm(
                        nn.Conv2d(nc_out, nc_out, 3, stride=1, padding=1)),
                    nn.LeakyReLU(0.2, inplace=True), nn.BatchNorm2d(nc_out)))
            size = int(size / 2)
            ndf_tmp = min(ndf_tmp * 2, max_nc)

        out = nn.Sequential(
            View(-1, 2 * 2 * ndf_tmp),
            nn.utils.spectral_norm(nn.Linear(2 * 2 * ndf_tmp, ndf_tmp)),
            nn.LeakyReLU(0.2, inplace=True),
            nn.utils.spectral_norm(nn.Linear(ndf_tmp, 1)),
            # nn.Tanh()
        )

        self.main.add_module("out", out)
Exemple #2
0
    def __init__(self):
        super(VGGDiscriminator, self).__init__()
        nc = 3
        ndf = 64

        depth = 17

        self.vgg = Vgg16(depth)

        self.main = nn.Sequential(
            # state size. (512) x 16 x 16
            nn.utils.spectral_norm(nn.Conv2d(256, ndf * 4, 4, 2, 1, bias=False)),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 8 x 8
            nn.utils.spectral_norm(nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False)),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            View(-1, ndf * 8 * 4 * 4),
            nn.utils.spectral_norm(nn.Linear(ndf * 8 * 4 * 4, 10))
            # state size. (ndf*8) x 4 x 4
            # nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False)
        )
Exemple #3
0
    def __init__(self, noise: Noise, image_size: int, ngf=32):
        super(ResDCGenerator, self).__init__()
        n_up = int(math.log2(image_size / 4))
        assert 4 * (2**n_up) == image_size
        nc = 3

        layers = [
            nn.utils.spectral_norm(
                nn.Linear(noise.size(), noise.size(), bias=False)),
            View(-1, noise.size(), 1, 1),
            nn.utils.spectral_norm(
                nn.ConvTranspose2d(noise.size(), ngf * 8, 4, 1, 0,
                                   bias=False)),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
        ]

        nc_l_next = -1
        for l in range(n_up):

            nc_l = max(ngf, (ngf * 8) // 2**l)
            nc_l_next = max(ngf, nc_l // 2)

            layers += [
                Up2xResidualBlock(nc_l,
                                  nc_l_next,
                                  PaddingType.REFLECT,
                                  nn.BatchNorm2d,
                                  use_spectral_norm=True)
            ]

            if l == 2:
                layers += [SelfAttention2d(nc_l_next)]

        layers += [nn.Conv2d(nc_l_next, nc, 3, 1, 1, bias=False)]

        self.main = nn.Sequential(*layers)
Exemple #4
0
    def __init__(self,
                 noise: Noise,
                 image_size,
                 in_channels,
                 out_channels,
                 gen_size=32,
                 n_down=5,
                 nc_max=256):
        super(UNetGenerator, self).__init__(noise)

        middle_data_size = int(image_size * 2 ** (-n_down))
        middle_nc = min(
            int(gen_size * 2 ** n_down),
            nc_max
        )

        assert (middle_data_size >= 4)
        assert (middle_data_size % 4 == 0)

        def down_block_factory(index: int) -> nn.Module:
            mult = 2 ** index
            in_size = min(int(gen_size * mult), nc_max)
            out_size = min(2 * in_size, nc_max)
            return Down2xConv2d(in_size, out_size)

        def up_block_factory(index: int) -> nn.Module:
            mult = 2 ** (n_down - index)
            in_size = min(int(gen_size * mult), nc_max)
            out_size = min(3 * in_size if index > 0 else 2 * in_size, 2 * nc_max)
            return Up2xConv2d(out_size, in_size)

        self.down_last_to_noise = nn.Sequential(
            View(-1, middle_nc * middle_data_size**2),
            spectral_norm_init(nn.Linear(middle_nc * middle_data_size**2, noise.size())),
            nn.ReLU(inplace=True)
        )

        self.noise_up_modules = nn.Sequential(
            spectral_norm_init(nn.Linear(2 * noise.size(), 2 * noise.size())),
            nn.ReLU(True),
            spectral_norm_init(nn.Linear(2 * noise.size(), 2 * noise.size())),
            nn.ReLU(True),
            View(-1, 2 * noise.size(), 1, 1),
            Up4xConv2d(2 * noise.size(), middle_nc)
        )

        up_size = 4

        while up_size < middle_data_size:
            up_size *= 2
            self.noise_up_modules.add_module(
                "up_noize" + str(up_size),
                Up2xConv2d(middle_nc, middle_nc)
            )

        self.unet = UNetExtra(
            n_down,
            in_block=nn.Sequential(
                spectral_norm_init(nn.Conv2d(in_channels, gen_size, 3, stride=1, padding=1)),
                nn.BatchNorm2d(gen_size),
                nn.ReLU(inplace=True)
            ),
            out_block=nn.Sequential(
                spectral_norm_init(nn.Conv2d(2 * gen_size, gen_size, 3, padding=1)),
                nn.BatchNorm2d(gen_size),
                nn.ReLU(inplace=True),
                nn.ConvTranspose2d(gen_size, out_channels, 3, 1, 1, bias=True)
            ),
            middle_block=self.down_last_to_noise,
            middle_block_extra=self.noise_up_modules,
            down_block=down_block_factory,
            up_block=up_block_factory
        )
    def __init__(self, noise_size: int, image_size: int, ngf=32):
        super(ResMeasureToImage, self).__init__()
        n_up = int(math.log2(image_size / 4))
        assert 4 * (2**n_up) == image_size
        nc = 3

        layers = [
            spectral_norm_init(nn.Linear(noise_size,
                                         noise_size // 2,
                                         bias=False),
                               n_power_iterations=10),
            nn.LeakyReLU(0.2, inplace=True),  #nn.ReLU(inplace=True),
            spectral_norm_init(nn.Linear(noise_size // 2,
                                         noise_size // 2,
                                         bias=False),
                               n_power_iterations=10),
            nn.LeakyReLU(0.2, inplace=True),
            View(-1, noise_size // 2, 1, 1),
            spectral_norm_init(nn.ConvTranspose2d(noise_size // 2,
                                                  ngf * 4,
                                                  4,
                                                  1,
                                                  0,
                                                  bias=False),
                               n_power_iterations=10),
            nn.InstanceNorm2d(ngf * 4),  # nn.InstanceNorm2d(ngf * 8),
            nn.LeakyReLU(0.2, inplace=True),
        ]

        nc_l_next = -1
        for l in range(n_up):

            nc_l = max(ngf // 2, (ngf * 4) // 2**l)
            nc_l_next = max(ngf // 2, nc_l // 2)

            layers += [
                Up2xResidualBlock(nc_l,
                                  nc_l_next,
                                  PaddingType.REFLECT,
                                  nn.InstanceNorm2d,
                                  use_spectral_norm=True,
                                  activation=nn.LeakyReLU(
                                      0.2, inplace=True)),  #nn.InstanceNorm2d
                PooledResidualBlock(nc_l_next,
                                    nc_l_next,
                                    nc_l_next,
                                    nn.Identity(),
                                    PaddingType.REFLECT,
                                    nn.InstanceNorm2d,
                                    use_spectral_norm=True,
                                    activation=nn.LeakyReLU(0.2, inplace=True))
            ]

            if l == 2:
                layers += [
                    # nn.Dropout2d(p=0.5),
                    SelfAttention2d(nc_l_next)
                ]

        layers += [nn.Conv2d(nc_l_next, nc, 3, 1, 1, bias=False)]

        self.main = nn.Sequential(*layers)