Exemple #1
0
                                  check_trace=True,
                                  optimize=args.optimize)

    if args.action == 'inspect':
        framework.inspect(network,
                          val_loader,
                          args.artifacts,
                          early_stop=args.early_stop)
    elif args.action == 'evaluate':
        callbacks = [PrecRec(), IsicIoU()]

        framework.test(
            network,
            val_loader,
            loss_fn,
            callbacks,
            start_epoch,
            writer=writer,
            early_stop=args.early_stop,
        )

        for callback in callbacks:
            results = callback.get_dict()
            print(results)
            for key in results:
                writer.add_scalar(f'Evaluation/{key}', results[key],
                                  start_epoch)

    elif args.action == 'train':
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optim,
                                                               'min',
Exemple #2
0
        example = next(iter(train_loader))[0].cuda()
        network = torch.jit.trace(network,
                                  example,
                                  check_trace=True,
                                  optimize=args.optimize)

    if args.action == 'inspect':
        framework.inspect(network,
                          val_loader,
                          args.artifacts,
                          early_stop=args.early_stop)
    elif args.action == 'evaluate':
        prec_rec = PrecRec()
        framework.test(network,
                       val_loader,
                       loss_fn, [],
                       logger=logger,
                       callbacks=[prec_rec])

    elif args.action == 'train':
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optim,
                                                               'min',
                                                               patience=2,
                                                               verbose=True,
                                                               cooldown=1)

        for epoch in range(start_epoch, args.epochs):
            train_loss = framework.train(network,
                                         train_loader,
                                         loss_fn,
                                         optim,
Exemple #3
0
        if not args.load:
            print('Set start epoch and best score to 0')
            best_score = 0.
            start_epoch = 0

        if args.action == 'inspect':
            framework.inspect(network,
                              val_loader,
                              args.artifacts,
                              criteria=criteria,
                              early_stop=args.early_stop)
        elif args.action == 'evaluate':
            prec_rec = PrecRec()
            framework.test(network,
                           val_loader,
                           criteria,
                           logger=logger,
                           callbacks=[prec_rec])
            f1, thres = prec_rec.best_f1()
            print('F1', f1, 'at', thres)

        elif args.action == 'train':
            scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
                optim, 'min', patience=2, verbose=True, cooldown=1)

            for epoch in range(start_epoch, args.epochs):
                train_loss = framework.train(network,
                                             train_loader,
                                             loss_fn,
                                             optim,
                                             epoch,