training=False) # fa.run_guide_mode(15) # fa.goto_gripper(0.025, grasp=True) goal = goal2worldTF.translation goal[2] += 0.03 # offset the height goal[0] += 0.01 print('Goal Loc = {}'.format(goal)) current_pose = fa.get_pose().translation print('Current Loc = {}'.format(current_pose)) goal_pose = (goal - current_pose).tolist() print('Sensor Value = {}'.format(goal_pose)) # scaling factor for z trajectory goal_pose.append(-0.5) print(goal_pose) input("Press Enter to continue...") print('Running the dmp') # fa.run_guide_mode(args.time) fa.execute_pose_dmp(pose_dmp_info, duration=args.time, use_goal_formulation=False, initial_sensor_values=goal_pose, position_only=True, joint_impedances=gains) fa.goto_gripper(0.08, grasp=False)
import numpy as np import math import rospy import argparse import pickle from autolab_core import RigidTransform, Point from frankapy import FrankaArm if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--pose_dmp_weights_file_path', '-f', type=str) args = parser.parse_args() print('Starting robot') fa = FrankaArm() pose_dmp_file = open(args.pose_dmp_weights_file_path, "rb") pose_dmp_info = pickle.load(pose_dmp_file) fa.execute_pose_dmp(pose_dmp_info, duration=4.2)
parser = argparse.ArgumentParser() parser.add_argument('--pose_dmp_weights_file_path', type=str, default='') args = parser.parse_args() if not args.pose_dmp_weights_file_path: args.pose_dmp_weights_file_path = '/home/sony/logs/robot_state_data_0_pose_weights.pkl' pose_dmp_file = open(args.pose_dmp_weights_file_path, "rb") pose_dmp_info = pickle.load(pose_dmp_file) print('Starting robot') fa = FrankaArm() fa.reset_pose() fa.reset_joints() print('Opening Grippers') fa.open_gripper() # random_position = RigidTransform(rotation=np.array([ # [1, 0, 0], # [0, -1, 0], # [0, 0, -1] # ]), translation=np.array([0.3069, 0, 0.2867]), # from_frame='franka_tool', to_frame='world') # fa.goto_pose_with_cartesian_control(random_position, 10) fa.execute_pose_dmp(pose_dmp_info, duration=10, skill_desc='pose_dmp')