class SaveTests(unittest.TestCase): def setUp(self): self.s = Signal() self.x = np.array([0, 1, 2, 3]) self.y = np.array([0, 1, 0, -1]) self.s.load_nparray([0, 1, 0, -1], 'signal', 'm', 1) self.s.fft() self.s.freq_filter_Hilbert_complex() self.s.ifft() self.s.f.attrs['two'] = 2 # test attribute to verify attrs copied self.f_dst = h5py.File('.test2.h5', backing_store=False, driver='core') def test_save_pass_list_datasets(self): self.s.save(self.f_dst, ['x', 'y']) assert_array_equal(self.f_dst['x'][:], self.x) assert_array_equal(self.f_dst['y'][:], self.y) self.assertEqual(self.f_dst.attrs['two'], 2) def test_save_pass_string(self): self.s.save(self.f_dst, 'input') assert_array_equal(self.f_dst['x'][:], self.x[:]) assert_array_equal(self.f_dst['y'][:], self.y) self.assertEqual(self.f_dst.attrs['two'], 2) def tearDown(self): self.f_dst.close() self.s.close()
class FFTTests(unittest.TestCase): def setUp(self): """ Create an trial *Signal* object """ fd = 50.0E3 # digitization frequency f0 = 5.00E3 # signal frequency nt = 512 # number of signal points self.dt = dt = 1/fd t = dt*np.arange(nt) s = 1.0*np.sin(2*np.pi*f0*t) self.s = Signal('.FFTTests_1.h5') self.s.load_nparray(s,"x","nm",dt) self.s.time_mask_binarate("middle") self.s.time_window_cyclicize(10*dt) self.s.fft() self.s.freq_filter_Hilbert_complex() def testfft_1(self): """FFT: test that the resulting data is complex""" first_point = self.s.f['workup/freq/FT'][0] self.assertEqual(isinstance(first_point, complex),True) def testfft_2(self): """FFT: test that the complex Hilbert transform filter is real""" first_point = self.s.f['workup/freq/filter/Hc'][0] self.assertEqual(isinstance(first_point, complex),False) def testfft_3(self): """FFT: test the complex Hilbert transform filter near freq = 0""" freq = self.s.f['workup/freq/freq'][:] index = np.roll(freq == 0,-1) + np.roll(freq == 0,0) + np.roll(freq == 0,1) filt = self.s.f['workup/freq/filter/Hc'][index] self.assertTrue(np.allclose(filt,np.array([0, 1, 2]))) def test_phase_fit_rounding(self): self.s.ifft() # T_chunk_goal set to cause problem due to incorrect rounding T_chunk_goal = self.dt*26 self.s.fit_phase(T_chunk_goal) def tearDown(self): """Close the h5 files before the next iteration.""" try: self.s.f.close() except: pass
class FFTTests(unittest.TestCase): def setUp(self): """ Create an trial *Signal* object """ fd = 50.0E3 # digitization frequency f0 = 5.00E3 # signal frequency nt = 512 # number of signal points self.dt = dt = 1 / fd t = dt * np.arange(nt) s = 1.0 * np.sin(2 * np.pi * f0 * t) self.s = Signal('.FFTTests_1.h5') self.s.load_nparray(s, "x", "nm", dt) self.s.time_mask_binarate("middle") self.s.time_window_cyclicize(10 * dt) self.s.fft() self.s.freq_filter_Hilbert_complex() def testfft_1(self): """FFT: test that the resulting data is complex""" first_point = self.s.f['workup/freq/FT'][0] self.assertEqual(isinstance(first_point, complex), True) def testfft_2(self): """FFT: test that the complex Hilbert transform filter is real""" first_point = self.s.f['workup/freq/filter/Hc'][0] self.assertEqual(isinstance(first_point, complex), False) def testfft_3(self): """FFT: test the complex Hilbert transform filter near freq = 0""" freq = self.s.f['workup/freq/freq'][:] index = np.roll(freq == 0, -1) + np.roll(freq == 0, 0) + np.roll( freq == 0, 1) filt = self.s.f['workup/freq/filter/Hc'][index] self.assertTrue(np.allclose(filt, np.array([0, 1, 2]))) def test_phase_fit_rounding(self): self.s.ifft() # T_chunk_goal set to cause problem due to incorrect rounding T_chunk_goal = self.dt * 26 self.s.fit_phase(T_chunk_goal) def tearDown(self): """Close the h5 files before the next iteration.""" try: self.s.f.close() except: pass
class FFTOddPoints(unittest.TestCase): def setUp(self): self.x = np.array([0, 1, 0, -1, 0, 1, 0, -1, 0]) self.s = Signal() self.s.load_nparray(self.x, 'x', 'nm', 1) def test_ifft_odd_pts(self): self.s.fft() self.s.ifft() x_ifft_fft = self.s.f['workup/time/z'][:] x = self.x # Should give x back to within numerical rounding errors assert_allclose(x.real, x_ifft_fft.real, atol=1e-15) assert_allclose(x.imag, x_ifft_fft.imag, atol=1e-15) def tearDown(self): self.s.close()