def setup_nl(self, L=10, rcut=3, N=40, num_neighbors=6):
        # Define values
        self.L = L
        self.rcut = rcut
        self.N = N
        self.num_neighbors = num_neighbors

        # Initialize Box and cell list
        self.cl = locality.NearestNeighbors(self.rcut, self.num_neighbors)
        self.fbox, self.points = make_box_and_random_points(L, N)
Exemple #2
0
    def test_single_neighbor(self):
        pos = np.zeros((10, 3), dtype=np.float32)
        pos[::2, 0] = 2 * np.arange(5)
        pos[1::2, 0] = pos[::2, 0] + .25
        pos[:, 1] = pos[:, 0]
        pos[0] = (9, 7, 0)

        fbox = box.Box.square(L=4 * len(pos))
        nn = locality.NearestNeighbors(1, 1).compute(fbox, pos, pos)
        nlist = nn.nlist

        self.assertEqual(len(nlist), len(pos))
Exemple #3
0
    def test_neighbor_count(self):
        L = 10  # Box Dimensions
        rcut = 3  # Cutoff radius
        N = 40  # number of particles
        num_neighbors = 6

        # Initialize cell list
        cl = locality.NearestNeighbors(rcut, num_neighbors)

        fbox, points = make_box_and_random_points(L, N)
        cl.compute(fbox, points, points)

        self.assertEqual(cl.num_neighbors, num_neighbors)
        self.assertEqual(len(cl.getNeighbors(0)), num_neighbors)
Exemple #4
0
    def test_neighbor_count(self):
        L = 10  #Box Dimensions
        rcut = 3  #Cutoff radius
        N = 40
        # number of particles
        num_neighbors = 6

        fbox = box.Box.cube(L)  #Initialize Box
        cl = locality.NearestNeighbors(rcut,
                                       num_neighbors)  #Initialize cell list

        points = np.random.uniform(-L / 2, L / 2, (N, 3)).astype(np.float32)
        cl.compute(fbox, points, points)

        self.assertEqual(cl.getNumNeighbors(), num_neighbors)
        self.assertEqual(len(cl.getNeighbors(0)), num_neighbors)
Exemple #5
0
    def test_box_methods(self):
        L = 10  # Box Dimensions
        rcut = 3  # Cutoff radius
        N = 1  # number of particles
        num_neighbors = 6

        # Initialize cell list
        cl = locality.NearestNeighbors(rcut, num_neighbors)

        fbox, points = make_box_and_random_points(L, N)
        cl.compute([L, L, L], points, points)

        self.assertEqual(cl.box, fbox)
        npt.assert_array_equal(cl.r_sq_list, [[-1, -1, -1, -1, -1, -1]])
        npt.assert_array_equal(cl.wrapped_vectors,
                               [[[-1, -1, -1], [-1, -1, -1], [-1, -1, -1],
                                 [-1, -1, -1], [-1, -1, -1], [-1, -1, -1]]])
Exemple #6
0
    def test_small_box(self):
        L = 10  # Box Dimensions
        N = 8  # number of particles
        num_neighbors = N - 1

        fbox, pos = make_box_and_random_points(L, N)

        for box_cell_count in range(2, 8):
            rcut = L / box_cell_count / 1.0001
            # Initialize cell list
            cl = locality.NearestNeighbors(rcut, num_neighbors)
            nlist = cl.compute(fbox, pos, pos).nlist

            # all particles should be all particles' neighbors
            if len(nlist) != N * (N - 1):
                raise AssertionError(
                    'Wrong-sized neighbor list in test_even_cells,'
                    'box_cell_count={}'.format(box_cell_count))
Exemple #7
0
    def test_repeated_neighbors(self):
        L = 10  # Box Dimensions
        N = 40  # number of particles
        num_neighbors = 6

        fbox, pos = make_box_and_random_points(L, N)

        for rcut in np.random.uniform(L / 2, L / 5, 128):
            # Initialize cell list
            cl = locality.NearestNeighbors(rcut, num_neighbors)
            nlist = cl.compute(fbox, pos, pos).nlist

            all_pairs = list(set(zip(nlist.index_i, nlist.index_j)))

            if len(all_pairs) != len(nlist):
                raise AssertionError(
                    'Repeated neighbor pair sizes in test_repeated_neighbors, '
                    'rcut={}'.format(rcut))
Exemple #8
0
    def test_strict_vals(self):
        L = 10  # Box Dimensions
        rcut = 2  # Cutoff radius
        num_neighbors = 1

        # Initialize Box and cell list
        fbox = box.Box.cube(L)
        cl = locality.NearestNeighbors(rcut, num_neighbors, strict_cut=True)

        points = np.zeros(shape=(2, 3), dtype=np.float32)
        points[0] = [0.0, 0.0, 0.0]
        points[1] = [3.0, 0.0, 0.0]
        cl.compute(fbox, points, points)
        neighbor_list = cl.getNeighborList()
        rsq_list = cl.r_sq_list
        npt.assert_equal(neighbor_list[0, 0], cl.UINTMAX)
        npt.assert_equal(neighbor_list[1, 0], cl.UINTMAX)
        npt.assert_allclose(rsq_list[0, 0], -1.0, atol=1e-6)
        npt.assert_allclose(rsq_list[1, 0], -1.0, atol=1e-6)
Exemple #9
0
 def __init__(self, system, groups, log, activation_energy,
              sec_bond_weight):
     Bonding.__init__(self,
                      system=system,
                      groups=groups,
                      log=log,
                      activation_energy=activation_energy,
                      sec_bond_weight=sec_bond_weight)
     # create freud nearest neighbor object
     # set number of neighbors
     self.n_neigh = 6
     # create freud nearest neighbors object
     self.nn = locality.NearestNeighbors(rmax=self.cut_off_dist,
                                         n_neigh=self.n_neigh,
                                         strict_cut=True)
     snapshot = self.system.take_snapshot()
     self.fbox = box.Box(Lx=snapshot.box.Lx,
                         Ly=snapshot.box.Ly,
                         Lz=snapshot.box.Lz)
Exemple #10
0
    def test_two_ways(self):
        L = 10  # Box Dimensions
        rcut = 3  # Cutoff radius
        N = 40  # number of particles
        num_neighbors = 6

        # Initialize cell list
        cl = locality.NearestNeighbors(rcut, num_neighbors)

        fbox, points = make_box_and_random_points(L, N)
        cl.compute(fbox, points, points)

        neighbor_list = cl.getNeighborList()
        rsq_list = cl.r_sq_list
        # pick particle at random
        pidx = np.random.randint(N)
        nidx = np.random.randint(num_neighbors)
        npt.assert_equal(neighbor_list[pidx, nidx],
                         cl.getNeighbors(pidx)[nidx])
        npt.assert_equal(rsq_list[pidx, nidx], cl.getRsq(pidx)[nidx])
Exemple #11
0
    def test_strict_vals(self):
        L = 10  #Box Dimensions
        rcut = 2  #Cutoff radius
        N = 2
        # number of particles
        num_neighbors = 1

        fbox = box.Box.cube(L)  #Initialize Box
        cl = locality.NearestNeighbors(rcut, num_neighbors,
                                       strict_cut=True)  #Initialize cell list

        points = np.zeros(shape=(2, 3), dtype=np.float32)
        points[0] = [0.0, 0.0, 0.0]
        points[1] = [3.0, 0.0, 0.0]
        cl.compute(fbox, points, points)
        neighbor_list = cl.getNeighborList()
        rsq_list = cl.getRsqList()
        npt.assert_equal(neighbor_list[0, 0], cl.getUINTMAX())
        npt.assert_equal(neighbor_list[1, 0], cl.getUINTMAX())
        npt.assert_equal(rsq_list[0, 0], -1.0)
        npt.assert_equal(rsq_list[1, 0], -1.0)
Exemple #12
0
    def test_two_ways(self):
        L = 10  #Box Dimensions
        rcut = 3  #Cutoff radius
        N = 40
        # number of particles
        num_neighbors = 6

        fbox = box.Box.cube(L)  #Initialize Box
        cl = locality.NearestNeighbors(rcut,
                                       num_neighbors)  #Initialize cell list

        points = np.random.uniform(-L / 2, L / 2, (N, 3)).astype(np.float32)
        cl.compute(fbox, points, points)

        neighbor_list = cl.getNeighborList()
        rsq_list = cl.getRsqList()
        # pick particle at random
        pidx = np.random.randint(N)
        nidx = np.random.randint(num_neighbors)
        npt.assert_equal(neighbor_list[pidx, nidx],
                         cl.getNeighbors(pidx)[nidx])
        npt.assert_equal(rsq_list[pidx, nidx], cl.getRsq(pidx)[nidx])
Exemple #13
0
    def test_cheap_hexatic(self):
        """Construct a poor man's hexatic order parameter using
        NeighborList properties"""
        fbox = box.Box.square(10)

        # make a square grid
        xs = np.linspace(-fbox.Lx / 2, fbox.Lx / 2, 10, endpoint=False)
        positions = np.zeros((len(xs)**2, 3), dtype=np.float32)
        positions[:, :2] = np.array(list(itertools.product(xs, xs)),
                                    dtype=np.float32)

        nn = locality.NearestNeighbors(1.5, 4)
        nn.compute(fbox, positions, positions)

        rijs = positions[nn.nlist.index_j] - positions[nn.nlist.index_i]
        fbox.wrap(rijs)
        thetas = np.arctan2(rijs[:, 1], rijs[:, 0])

        cplx = np.exp(4 * 1j * thetas)
        psi4 = np.add.reduceat(cplx,
                               nn.nlist.segments) / nn.nlist.neighbor_counts

        self.assertEqual(len(psi4), len(positions))
        self.assertTrue(np.allclose(np.abs(psi4), 1))