def build_frontend(inputs, frontend, is_training=True): inputs = tf.to_float(inputs) if frontend == 'ResNet50': with slim.arg_scope(resnet_v2.resnet_arg_scope()): logits, end_points = resnet_v2.resnet_v2_50( inputs, is_training=is_training, scope='resnet_v2_50') frontend_scope = 'resnet_v2_50' elif frontend == 'ResNet101': with slim.arg_scope(resnet_v2.resnet_arg_scope()): logits, end_points = resnet_v2.resnet_v2_101( inputs, is_training=is_training, scope='resnet_v2_101') frontend_scope = 'resnet_v2_101' elif frontend == 'ResNet152': with slim.arg_scope(resnet_v2.resnet_arg_scope()): logits, end_points = resnet_v2.resnet_v2_152( inputs, is_training=is_training, scope='resnet_v2_152') frontend_scope = 'resnet_v2_152' elif frontend == 'MobileNetV2': with slim.arg_scope(mobilenet_v2.training_scope()): logits, end_points = mobilenet_v2.mobilenet( inputs, is_training=is_training, scope='mobilenet_v2', base_only=True) frontend_scope = 'mobilenet_v2' elif frontend == 'InceptionV4': with slim.arg_scope(inception_v4.inception_v4_arg_scope()): logits, end_points = inception_v4.inception_v4( inputs, is_training=is_training, scope='inception_v4') frontend_scope = 'inception_v4' else: raise ValueError( "Unsupported fronetnd model '%s'. This function only supports ResNet50, ResNet101, ResNet152, and MobileNetV2" % (frontend)) return logits, end_points, frontend_scope
def build_frontend(inputs, frontend, is_training=True, pretrained_dir="checkpoints"): if frontend == 'ResNet50': with slim.arg_scope(resnet_v2.resnet_arg_scope()): logits, end_points = resnet_v2.resnet_v2_50(inputs, is_training=is_training, scope='resnet_v2_50') frontend_scope='resnet_v2_50' init_fn = slim.assign_from_checkpoint_fn("D:/codepython/Segmentation/checkpoints/resnet_v2_50.ckpt", var_list=slim.get_model_variables('resnet_v2_50'), ignore_missing_vars=True) elif frontend == 'ResNet101': with slim.arg_scope(resnet_v2.resnet_arg_scope()): logits, end_points = resnet_v2.resnet_v2_101(inputs, is_training=is_training, scope='resnet_v2_101') frontend_scope='resnet_v2_101' init_fn = slim.assign_from_checkpoint_fn(model_path=os.path.join(pretrained_dir, 'resnet_v2_101.ckpt'), var_list=slim.get_model_variables('resnet_v2_101'), ignore_missing_vars=True) elif frontend == 'ResNet152': with slim.arg_scope(resnet_v2.resnet_arg_scope()): logits, end_points = resnet_v2.resnet_v2_152(inputs, is_training=is_training, scope='resnet_v2_152') frontend_scope='resnet_v2_152' init_fn = slim.assign_from_checkpoint_fn(model_path=os.path.join(pretrained_dir, 'resnet_v2_152.ckpt'), var_list=slim.get_model_variables('resnet_v2_152'), ignore_missing_vars=True) elif frontend == 'MobileNetV2': with slim.arg_scope(mobilenet_v2.training_scope()): logits, end_points = mobilenet_v2.mobilenet(inputs, is_training=is_training, scope='MobilenetV2', base_only=True) frontend_scope='MobilenetV2' init_fn = slim.assign_from_checkpoint_fn(model_path=os.path.join(pretrained_dir, 'mobilenet_v2_1.0_224.ckpt'), var_list=slim.get_model_variables('MobilenetV2'), ignore_missing_vars=True) elif frontend == 'InceptionV4': with slim.arg_scope(inception_v4.inception_v4_arg_scope()): logits, end_points = inception_v4.inception_v4(inputs, is_training=is_training, scope='inception_v4') frontend_scope='inception_v4' init_fn = slim.assign_from_checkpoint_fn(model_path=os.path.join(pretrained_dir, 'inception_v4.ckpt'), var_list=slim.get_model_variables('inception_v4'), ignore_missing_vars=True) else: raise ValueError("Unsupported fronetnd model '%s'. This function only supports ResNet50, ResNet101, ResNet152, and MobileNetV2" % (frontend)) return logits, end_points, frontend_scope, init_fn
def build_frontend(inputs, frontend_config, is_training=True, reuse=False): frontend = frontend_config['frontend'] pretrained_dir = frontend_config['pretrained_dir'] if "ResNet50" == frontend and not os.path.isfile("pretrain/resnet_v2_50.ckpt"): download_checkpoints("ResNet50") if "ResNet101" == frontend and not os.path.isfile("pretrain/resnet_v2_101.ckpt"): download_checkpoints("ResNet101") if "ResNet152" == frontend and not os.path.isfile("pretrain/resnet_v2_152.ckpt"): download_checkpoints("ResNet152") if "MobileNetV2" == frontend and not os.path.isfile("pretrain/mobilenet_v2.ckpt.data-00000-of-00001"): download_checkpoints("MobileNetV2") if "InceptionV4" == frontend and not os.path.isfile("pretrain/inception_v4.ckpt"): download_checkpoints("InceptionV4") if frontend == 'ResNet50': with slim.arg_scope(resnet_v2.resnet_arg_scope()): logits, end_points = resnet_v2.resnet_v2_50(inputs, is_training=is_training, scope='resnet_v2_50', reuse=reuse) frontend_scope='resnet_v2_50' init_fn = slim.assign_from_checkpoint_fn(model_path=os.path.join(pretrained_dir, 'resnet_v2_50.ckpt'), var_list=slim.get_model_variables('resnet_v2_50'), ignore_missing_vars=True) elif frontend == 'ResNet101': with slim.arg_scope(resnet_v2.resnet_arg_scope()): logits, end_points = resnet_v2.resnet_v2_101(inputs, is_training=is_training, scope='resnet_v2_101', reuse=reuse) frontend_scope='resnet_v2_101' init_fn = slim.assign_from_checkpoint_fn(model_path=os.path.join(pretrained_dir, 'resnet_v2_101.ckpt'), var_list=slim.get_model_variables('resnet_v2_101'), ignore_missing_vars=True) elif frontend == 'ResNet152': with slim.arg_scope(resnet_v2.resnet_arg_scope()): logits, end_points = resnet_v2.resnet_v2_152(inputs, is_training=is_training, scope='resnet_v2_152', reuse=reuse) frontend_scope='resnet_v2_152' init_fn = slim.assign_from_checkpoint_fn(model_path=os.path.join(pretrained_dir, 'resnet_v2_152.ckpt'), var_list=slim.get_model_variables('resnet_v2_152'), ignore_missing_vars=True) elif frontend == 'MobileNetV2': with slim.arg_scope(mobilenet_v2.training_scope()): logits, end_points = mobilenet_v2.mobilenet(inputs, is_training=is_training, scope='mobilenet_v2', base_only=True, reuse=reuse) frontend_scope='mobilenet_v2' init_fn = slim.assign_from_checkpoint_fn(model_path=os.path.join(pretrained_dir, 'mobilenet_v2.ckpt'), var_list=slim.get_model_variables('mobilenet_v2'), ignore_missing_vars=True) elif frontend == 'InceptionV4': with slim.arg_scope(inception_v4.inception_v4_arg_scope()): logits, end_points = inception_v4.inception_v4(inputs, is_training=is_training, scope='inception_v4', reuse=reuse) frontend_scope='inception_v4' init_fn = slim.assign_from_checkpoint_fn(model_path=os.path.join(pretrained_dir, 'inception_v4.ckpt'), var_list=slim.get_model_variables('inception_v4'), ignore_missing_vars=True) elif frontend == 'DenseNet121': with slim.arg_scope(densenet.densenet_arg_scope()): logits, end_points = densenet.densenet121(inputs, is_training=is_training, scope='densenet121', reuse=reuse) frontend_scope ='densenet121' init_fn = slim.assign_from_checkpoint_fn(model_path=os.path.join(pretrained_dir, 'tf-densenet121/tf-densenet121.ckpt'), var_list=slim.get_model_variables('densenet121'), ignore_missing_vars=True) elif frontend == 'DenseNet161': with slim.arg_scope(densenet.densenet_arg_scope()): logits, end_points = densenet.densenet121(inputs, is_training=is_training, scope='densenet161', reuse=reuse) frontend_scope='densenet161' init_fn = slim.assign_from_checkpoint_fn(model_path=os.path.join(pretrained_dir, 'tf-densenet161.ckpt'), var_list=slim.get_model_variables('densenet161'), ignore_missing_vars=True) elif frontend == 'DenseNet169': with slim.arg_scope(densenet.densenet_arg_scope()): logits, end_points= densenet.densenet121(inputs, is_training=is_training, scope='densenet169', reuse=reuse) frontend_scope='densenet169' init_fn = slim.assign_from_checkpoint_fn(model_path=os.path.join(pretrained_dir, 'tf-densenet169.ckpt'), var_list=slim.get_model_variables('densenet169'), ignore_missing_vars=True) elif frontend == 'Xception39': with slim.arg_scope(xception.xception_arg_scope()): logits, end_points = xception.xception39(inputs, is_training=is_training, scope='xception39', reuse=reuse) frontend_scope='Xception39' init_fn = None else: raise ValueError("Unsupported fronetnd model '%s'. This function only supports ResNet50, ResNet101, ResNet152, and MobileNetV2" % (frontend)) return logits, end_points, frontend_scope, init_fn