def __convert_to_df(self, data): """ NAME: __convert_to_df """ tid = [] item = [] cur_id = 0 for trans in data: # for each transaction in data for trans_it in trans: # for each item in each transaction tid.append(cur_id) item.append(trans_it) cur_id = cur_id + 1 tid = np.asarray(tid, dtype=np.int32) item = np.asarray(item, dtype=np.int32) df_t = pd.DataFrame({'trans_id': tid, 'item': item}, \ columns=['trans_id', 'item']) return FrovedisDataframe(df_t)
import os import numpy as np import pandas as pd from frovedis.exrpc.server import FrovedisServer from frovedis.dataframe.df import FrovedisDataframe FrovedisServer.initialize("mpirun -np 2 {}".format( os.environ['FROVEDIS_SERVER'])) data = { 'A': [10, 12, 13, 15], 'B': [10.23, 12.20, 34.90, 100.12], 'C': ['male', 'female', 'female', 'male'], } pdf = pd.DataFrame(data) df = FrovedisDataframe(pdf) print(pdf) print row_mat = df.to_frovedis_rowmajor_matrix(['A', 'B'], dtype=np.float64) print(row_mat.to_numpy_matrix()) print #col_mat = df.to_frovedis_colmajor_matrix(['A', 'B'], dtype=np.float64) #print (col_mat.to_numpy_matrix()) crs_mat, info = df.to_frovedis_crs_matrix(['A', 'B', 'C'], ['C'], need_info=True) crs_mat.debug_print() print
FrovedisServer.initialize(argvs[1]) peopleDF = { 'Ename': ['Michael', 'Andy', 'Tanaka', 'Raul', 'Yuta'], 'Age': [29, 30, 27, 19, 31], 'Country': ['USA', 'England', 'Japan', 'France', 'Japan'] } countryDF = { 'Ccode': [1, 2, 3, 4], 'Country': ['USA', 'England', 'Japan', 'France'] } pdf1 = pd.DataFrame(peopleDF) pdf2 = pd.DataFrame(countryDF) fdf1 = FrovedisDataframe(pdf1) fdf2 = FrovedisDataframe(pdf2) # displaying created frovedis dataframes fdf1.show() fdf2.show() # select demo fdf1["Ename"].show() # single column fdf1[["Ename", "Age"]].show() # multiple column # filter demo fdf1[fdf1.Age > 19].show() fdf1[fdf1.Age > 19 and fdf1.Country == 'Japan'].show() # sort demo
FrovedisServer.initialize("mpirun -np 2 {}".format(os.environ['FROVEDIS_SERVER'])) peopleDF = { 'Ename' : ['Michael', 'Andy', 'Tanaka', 'Raul', 'Yuta'], 'Age' : [29, 30, 27, 19, 31], 'Country' : ['USA', 'England', 'Japan', 'France', 'Japan'] } countryDF = { 'Ccode' : [1, 2, 3, 4], 'Country' : ['USA', 'England', 'Japan', 'France'] } pdf1 = pd.DataFrame(peopleDF) pdf2 = pd.DataFrame(countryDF) fdf1 = FrovedisDataframe(pdf1) fdf2 = FrovedisDataframe(pdf2) # display created frovedis dataframes print ("* print Frovedis DataFrame") fdf1.show() fdf2.show() # select demo print ("* select Ename and Age") fdf1[["Ename","Age"]].show() # filter demo print ("* filter by Age > 19 and Contry == 'Japan'") fdf1[fdf1.Age > 19 and fdf1.Country == 'Japan'].show()