def get(config_path, trained: bool = False): """ Get a model specified by relative path under FsDet's official ``configs/`` directory. Args: config_path (str): config file name relative to FsDet's "configs/" directory, e.g., "COCO-detection/faster_rcnn_R_101_FPN_ft_all_1shot.yaml" trained (bool): If True, will initialize the model with the trained model zoo weights. If False, the checkpoint specified in the config file's ``MODEL.WEIGHTS`` is used instead; this will typically (though not always) initialize a subset of weights using an ImageNet pre-trained model, while randomly initializing the other weights. Example: .. code-block:: python from fsdet import model_zoo model = model_zoo.get("COCO-detection/faster_rcnn_R_101_FPN_ft_all_1shot.yaml", trained=True) """ cfg_file = get_config_file(config_path) cfg = get_cfg() cfg.merge_from_file(cfg_file) if trained: cfg.MODEL.WEIGHTS = get_checkpoint_url(config_path) if not torch.cuda.is_available(): cfg.MODEL.DEVICE = "cpu" model = build_model(cfg) DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS) return model
def setup(args): cfg = get_cfg() if args.config_file: cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() return cfg
def setup_cfg(args): # load config from file and command-line arguments cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) # Set score_threshold for builtin models cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold cfg.freeze() return cfg
def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() set_global_cfg(cfg) default_setup(cfg, args) return cfg
def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() #cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml")) #cfg.DATALOADER.NUM_WORKERS = 4 #cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml") # Let training initialize from model zoo cfg.merge_from_file(args.config_file) #if args.opts: # cfg.merge_from_list(args.opts) cfg.freeze() set_global_cfg(cfg) default_setup(cfg, args) return cfg