Exemple #1
0
def clearn(datas):
    # arrat of (tipe, warna, image)

    dtipe = {}
    dcolor = {}

    for image in datas:
        img = image[2]
        img = futil.image_cleanup(img, 20)

        shape = fshape.feature_shape_extract(img)
        color = fcolor.feature_color_extract(img)
        texture = ftexture.feature_texture_extract(img)

        if not image[0] in dtipe:
            dtipe[image[0]] = []

        if not image[1] in dcolor:
            dcolor[image[1]] = []

        data = shape[0]
        data.extend(shape[1:])
        data.extend(texture)

        dtipe[image[0]].append(data)
        dcolor[image[1]].append(color)

    with open('data_type.json', 'w') as ft, open('data_color.json', 'w') as fc:
        json.dump(dtipe, ft)
        json.dump(dcolor, fc)

    return 'data_type.json', 'data_color.json'
Exemple #2
0
traintype = {}
traincolor = {}
with open('data_type.json') as ft, open('data_color.json') as fc:
    traintype = json.load(ft)
    traincolor = json.load(fc)

for item in items:
    img = Image.open(item)
    img = futil.image_cleanup(img, 20)

    container = {}
    imgs = futil.image_clip(img)
    for obj in imgs:
        shape = fshape.feature_shape_extract(obj)
        color = fcolor.feature_color_extract(obj)
        texture = ftexture.feature_texture_extract(obj)

        # Get Color
        colorval = {}
        colorsum = []
        for key, val in traincolor.iteritems():
            colorval[key] = []
            for feature in val:
                mean = (feature[1][0][0] - color[1][0][0]) ** 2 + (feature[1][0][1] - color[1][0][1]) ** 2 + (feature[1][0][2] - color[1][0][2]) ** 2
                std = (feature[1][1][0] - color[1][1][0]) ** 2 + (feature[1][1][1] - color[1][1][1]) ** 2 + (feature[1][1][2] - color[1][1][2]) ** 2
                skew = (feature[1][2][0] - color[1][2][0]) ** 2 + (feature[1][2][1] - color[1][2][1]) ** 2 + (feature[1][2][2] - color[1][2][2]) ** 2
                colorval[key].append(mean + std + skew)

            colorval[key].sort()
            dist = sum(colorval[key][:3])
Exemple #3
0
traintype = {}
traincolor = {}
with open('data_type.json') as ft, open('data_color.json') as fc:
    traintype = json.load(ft)
    traincolor = json.load(fc)

for item in items:
    img = Image.open(item)
    img = futil.image_cleanup(img, 20)

    container = {}

    shape = fshape.feature_shape_extract(img)
    color = fcolor.feature_color_extract(img)
    texture = ftexture.feature_texture_extract(img)

    # Get Color
    colorval = {}
    colorsum = []
    for key, val in traincolor.iteritems():
        colorval[key] = []
        for feature in val:
            mean = (feature[1][0][0] - color[1][0][0]) ** 2 + (feature[1][0][1] - color[1][0][1]) ** 2 + (feature[1][0][2] - color[1][0][2]) ** 2
            std = (feature[1][1][0] - color[1][1][0]) ** 2 + (feature[1][1][1] - color[1][1][1]) ** 2 + (feature[1][1][2] - color[1][1][2]) ** 2
            skew = (feature[1][2][0] - color[1][2][0]) ** 2 + (feature[1][2][1] - color[1][2][1]) ** 2 + (feature[1][2][2] - color[1][2][2]) ** 2
            colorval[key].append(mean + std + skew)

        colorval[key].sort()
        dist = sum(colorval[key][:3])
Exemple #4
0
def ctest(dtype, dcolor, datas):

    traintype = dtype
    traincolor = dcolor

    for item in datas:
        img = futil.image_cleanup(item[0], 20)

        shape = fshape.feature_shape_extract(img)
        color = fcolor.feature_color_extract(img)
        texture = ftexture.feature_texture_extract(img)

        # Get Color
        colorval = {}
        colorsum = []
        for key, val in traincolor.iteritems():
            colorval[key] = []
            for feature in val:
                mean = (feature[1][0][0] - color[1][0][0]) ** 2 + (feature[1][0][1] - color[1][0][1]) ** 2 + (feature[1][0][2] - color[1][0][2]) ** 2
                std = (feature[1][1][0] - color[1][1][0]) ** 2 + (feature[1][1][1] - color[1][1][1]) ** 2 + (feature[1][1][2] - color[1][1][2]) ** 2
                skew = (feature[1][2][0] - color[1][2][0]) ** 2 + (feature[1][2][1] - color[1][2][1]) ** 2 + (feature[1][2][2] - color[1][2][2]) ** 2
                colorval[key].append(mean + std + skew)

            colorval[key].sort()
            dist = sum(colorval[key][:2])
            # print key, colorval[key], dist
            if dist > thresholdc:
                continue

            colorsum.append((dist, key))

        colorname = "uc"
        if colorsum:
            colorsum.sort()
            colorname = colorsum[0][1]

        # Get Type
        data = shape[0]
        data.extend(shape[1:])
        data.extend(texture)

        idx = range(len(weight_table))

        typeval = {}
        typesum = []
        for key, val in traintype.iteritems():
            typeval[key] = []

            fx = []
            for i in idx:
                fx.append([])

            # Apply weight and sum the squared difference of each feature
            for feature in val:
                for i in idx:
                    fx[i].append(feature[i])
                typeval[key].append(sum([((data[i] - feature[i]) * weight_table[i]) ** 2 for i in idx]))

            # Calculate shape distance with the average. If a shape  have large distance, it might be an unknown shape.
            avg = [weight_table[i] * np.mean(fx[i]) for i in idx]
            std = [weight_table[i] * np.std(fx[i]) for i in idx]
            dist = np.sqrt(sum([(data[i] * weight_table[i] - avg[i]) ** 2 / std[i] if abs(std[i]) > 1e-10 else 0. for i in idx]))

            if dist > thresholdt:
                # If it is unknown, skip it
                continue

            # Take 3 best match
            typeval[key].sort()
            typesum.append((sum(typeval[key][:3]), key))

        typename = 'ut'
        if typesum:
            typesum.sort()
            typename = typesum[0][1]

        item[1].set(kamus[colorname]+' '+kamus[typename])