Exemple #1
0
 def test_cleanduplicates_multi_col(self):
     """
     Test for evaluation that doesn't have duplicates when comparing
     more than one column
     """
     df = pd.DataFrame([
         {
             "a": 1,
             "b": 1,
             "c": 5
         },
         {
             "a": 1,
             "b": 2,
             "c": 4
         },
         {
             "a": 3,
             "b": 3,
             "c": 3
         },
         {
             "a": 4,
             "b": 4,
             "c": 2
         },
         {
             "a": 5,
             "b": 5,
             "c": 1
         },
     ])
     eval1 = Evaluation(df)
     pipeline = [CleanDuplicates(["a", "b"])]
     result2 = eval1.process(pipeline).get_df()
     assert_frame_equal(result2, df, check_like=True)
Exemple #2
0
    def test_cleanduplicates_one_col(self):
        """ Test for evaluation that has duplicate in one column """
        df = pd.DataFrame([
            {
                "a": 1,
                "b": 1,
                "c": 5
            },
            {
                "a": 1,
                "b": 2,
                "c": 4
            },
            {
                "a": 3,
                "b": 3,
                "c": 3
            },
            {
                "a": 4,
                "b": 4,
                "c": 2
            },
            {
                "a": 5,
                "b": 5,
                "c": 1
            },
        ])
        eval1 = Evaluation(df)

        pipeline = [CleanDuplicates(["a"])]
        result = eval1.process(pipeline).get_df()
        expected = df.drop(1)

        assert_frame_equal(result, expected, check_like=True)
Exemple #3
0
    def test_normalizearound_negated(self):
        """
        Test whether all values are normalized in the correct direction based
        on the negation.
        """
        arrays = [
            ["blinky", "blinky", "blinky", "ibex", "ibex"],
            ["yosys", "yosys", "vivado", "yosys", "vivado"],
        ]
        index = pd.MultiIndex.from_arrays(arrays,
                                          names=("project", "synthesis_tool"))
        df = pd.DataFrame(data=[
            {
                "group": "b",
                "value": 0
            },
            {
                "group": "b",
                "value": 50
            },
            {
                "group": "b",
                "value": 100
            },
            {
                "group": "a",
                "value": 0
            },
            {
                "group": "a",
                "value": 10
            },
        ],
                          index=index)
        eval1 = Evaluation(df, eval_id=10)

        normalize_direction = {"value": Direction.MAXIMIZE}
        pipeline = [
            NormalizeAround(normalize_direction,
                            group_by="project",
                            idx_name="synthesis_tool",
                            idx_value="vivado")
        ]

        result = eval1.process(pipeline)
        expected = pd.DataFrame(data=[
            {
                "group": "b",
                "value": 1
            },
            {
                "group": "b",
                "value": 0.75
            },
            {
                "group": "b",
                "value": 0.5
            },
            {
                "group": "a",
                "value": 1
            },
            {
                "group": "a",
                "value": 0.5
            },
        ],
                                index=index)
        assert_frame_equal(result.get_df(), expected)
        assert result.get_eval_id() == 10
Exemple #4
0
    def test_sortindex(self):
        """ Test whether the dataframe is sorted by index """
        df = pd.DataFrame(data=[
            {
                "group": "a",
                "value": 10
            },
            {
                "group": "a",
                "value": 5
            },
            {
                "group": "a",
                "value": 3
            },
            {
                "group": "b",
                "value": 100
            },
            {
                "group": "b",
                "value": 31
            },
        ],
                          index=pd.Index([
                              5,
                              4,
                              3,
                              2,
                              1,
                          ], name="idx"))

        eval1 = Evaluation(df, eval_id=10)

        pipeline = [SortIndex(["idx"])]
        result = eval1.process(pipeline)
        expected = pd.DataFrame(data=[
            {
                "group": "b",
                "value": 31
            },
            {
                "group": "b",
                "value": 100
            },
            {
                "group": "a",
                "value": 3
            },
            {
                "group": "a",
                "value": 5
            },
            {
                "group": "a",
                "value": 10
            },
        ],
                                index=pd.Index([
                                    1,
                                    2,
                                    3,
                                    4,
                                    5,
                                ], name="idx"))
        assert_frame_equal(result.get_df(), expected)
        assert result.get_eval_id() == 10
Exemple #5
0
    def test_expandcolumn(self):
        """ Test whether the column is expanded """
        df = pd.DataFrame([
            {
                "group": "a",
                "value": 10
            },
            {
                "group": "a",
                "value": 5
            },
            {
                "group": "a",
                "value": 3
            },
            {
                "group": "b",
                "value": 100
            },
            {
                "group": "b",
                "value": 31
            },
        ])
        eval1 = Evaluation(df, eval_id=10)

        mapping = {
            "a": ("a", "x"),
            "b": ("b", "y"),
        }

        pipeline = [ExpandColumn("group", ["group1", "group2"], mapping)]
        result = eval1.process(pipeline)
        expected = pd.DataFrame([
            {
                "group": "a",
                "group1": "a",
                "group2": "x",
                "value": 10
            },
            {
                "group": "a",
                "group1": "a",
                "group2": "x",
                "value": 5
            },
            {
                "group": "a",
                "group1": "a",
                "group2": "x",
                "value": 3
            },
            {
                "group": "b",
                "group1": "b",
                "group2": "y",
                "value": 100
            },
            {
                "group": "b",
                "group1": "b",
                "group2": "y",
                "value": 31
            },
        ])

        assert_frame_equal(result.get_df(), expected, check_like=True)
        assert result.get_eval_id() == 10
Exemple #6
0
    def test_addnormalizedcolumn_direction(self):
        """ Test whether normalized column direction parameter works """
        df = pd.DataFrame([
            {
                "group": "a",
                "value": 10
            },
            {
                "group": "a",
                "value": 5
            },
            {
                "group": "a",
                "value": 3
            },
            {
                "group": "b",
                "value": 100
            },
            {
                "group": "b",
                "value": 31
            },
        ])
        eval1 = Evaluation(df, eval_id=10)

        # direction is -1 => normalize around minimum
        pipeline = [
            AddNormalizedColumn("group", "value", "normalized",
                                Direction.MINIMIZE)
        ]
        result = eval1.process(pipeline)
        expected = pd.DataFrame([
            {
                "group": "a",
                "value": 10,
                "normalized": 10 / 3
            },
            {
                "group": "a",
                "value": 5,
                "normalized": 5 / 3
            },
            {
                "group": "a",
                "value": 3,
                "normalized": 1.0
            },
            {
                "group": "b",
                "value": 100,
                "normalized": 100 / 31
            },
            {
                "group": "b",
                "value": 31,
                "normalized": 1.0
            },
        ])

        assert_frame_equal(result.get_df(), expected)

        assert result.get_eval_id() == 10
Exemple #7
0
    def test_comparetofirst_suffix(self):
        """ Test if CompareToFirst works with different suffix """
        df = pd.DataFrame([
            {
                "a": 1,
                "b": 5
            },
            {
                "a": 2,
                "b": 4
            },
            {
                "a": 3,
                "b": 3
            },
            {
                "a": 4,
                "b": 2
            },
            {
                "a": 5,
                "b": 1
            },
        ])
        eval1 = Evaluation(df, eval_id=20)

        direction = {"a": Direction.MAXIMIZE, "b": Direction.MAXIMIZE}

        pipeline = [CompareToFirst(direction, suffix=".diff")]
        eval1 = eval1.process(pipeline)

        expected_df = pd.DataFrame([
            {
                "a": 1,
                "a.diff": 1.0 / 1,
                "b": 5,
                "b.diff": 5.0 / 5
            },
            {
                "a": 2,
                "a.diff": 2.0 / 1,
                "b": 4,
                "b.diff": 4.0 / 5
            },
            {
                "a": 3,
                "a.diff": 3.0 / 1,
                "b": 3,
                "b.diff": 3.0 / 5
            },
            {
                "a": 4,
                "a.diff": 4.0 / 1,
                "b": 2,
                "b.diff": 2.0 / 5
            },
            {
                "a": 5,
                "a.diff": 5.0 / 1,
                "b": 1,
                "b.diff": 1.0 / 5
            },
        ])
        assert_frame_equal(eval1.get_df(), expected_df)
        assert eval1.get_eval_id() == 20