Exemple #1
0
def obtain_stream(dataset, batch_size, size=1):
    if size == 1:
        data_stream = dataset.get_example_stream()
        data_stream = transformers.Batch(data_stream, iteration_scheme=schemes.ConstantScheme(batch_size))

        # add padding and masks to the dataset
        data_stream = transformers.Padding(data_stream, mask_sources=('data'))
        return data_stream
    else:
        data_streams = [dataset.get_example_stream() for _ in xrange(size)]
        data_streams = [transformers.Batch(data_stream, iteration_scheme=schemes.ConstantScheme(batch_size))
                        for data_stream in data_streams]
        data_streams = [transformers.Padding(data_stream, mask_sources=('data')) for data_stream in data_streams]
        return data_streams
Exemple #2
0
    def output_stream(dataset, batch_size, size=1):
        data_stream = dataset.get_example_stream()
        data_stream = transformers.Batch(data_stream,
                                         iteration_scheme=schemes.ConstantScheme(batch_size))

        # add padding and masks to the dataset
        data_stream = transformers.Padding(data_stream, mask_sources=('source', 'target', 'target_c'))
        return data_stream