startH = 5.000 topH = 205.0 zNum_ = 21 kappa = 0.4 uStar_0 = kappa / np.log(zSeq_0[0]/0.001) * np.power(uSeq_0[-1][0]**2 + vSeq_0[-1][0]**2,0.5) uStar_1 = kappa / np.log(zSeq_1[1]/0.001) * np.power(uSeq_1[-1][1]**2 + vSeq_1[-1][1]**2,0.5) fig, ax = plt.subplots(figsize=(3,4.5)) z_ = np.linspace(startH,topH,zNum_) dz = (topH - startH) / (zNum_-1) # sowfa zero = np.zeros(1) v_0 = np.concatenate((zero, uSeq_0[-1])) z_0 = np.concatenate((zero, zSeq_0)) f_0 = interp1d(z_0, v_0, kind='linear', fill_value='extrapolate') v_0 = funcs.calc_deriv_1st_FD(dz, f_0(z_)) v_0 = v_0 * kappa * z_ / uStar_0 # palm v_1 = uSeq_1[-1] z_1 = zSeq_1 f_1 = interp1d(z_1, v_1, kind='linear', fill_value='extrapolate') v_1 = funcs.calc_deriv_1st_FD(dz, f_1(z_)) v_1 = v_1 * kappa * z_ / uStar_1 plt.plot(v_0, z_, label='sowfa', linewidth=1.0, linestyle='-', color='k') plt.plot(v_1, z_, label='palm', linewidth=1.0, linestyle='--', color='k') plt.xlabel(r"$\mathrm{\phi_m}$", fontsize=12) plt.ylabel('z (m)', fontsize=12) xaxis_min = -3 xaxis_max = 5 xaxis_d = 2
zNum_ = 21 kappa = 0.4 uStar_0 = kappa / np.log(zSeq_0[0] / 0.001) * np.power( uSeq_0[-1][0]**2 + vSeq_0[-1][0]**2, 0.5) uStar_3 = kappa / np.log(zSeq_3[1] / 0.001) * np.power( uSeq_3[-1][1]**2 + vSeq_3[-1][1]**2, 0.5) fig, ax = plt.subplots(figsize=(3, 4.5)) z_ = np.linspace(startH, topH, zNum_) dz = (topH - startH) / (zNum_ - 1) # sowfa zero = np.zeros(1) v_0 = np.concatenate((zero, uSeq_0[-1])) z_0 = np.concatenate((zero, zSeq_0)) f_0 = interp1d(z_0, v_0, kind='linear', fill_value='extrapolate') v_0 = funcs.calc_deriv_1st_FD(dz, f_0(z_)) v_0 = v_0 * kappa * z_ / uStar_0 # palm v_3 = uSeq_3[-1] z_3 = zSeq_3 f_3 = interp1d(z_3, v_3, kind='linear', fill_value='extrapolate') v_3 = funcs.calc_deriv_1st_FD(dz, f_3(z_)) v_3 = v_3 * kappa * z_ / uStar_3 plt.plot(v_0, z_, label='sowfa', linewidth=1.0, linestyle='-', color='k') plt.plot(v_3, z_, label='palm', linewidth=1.0, linestyle='--', color='k') plt.xlabel(r"$\mathrm{\phi_m}$", fontsize=12) plt.ylabel('z (m)', fontsize=12) xaxis_min = -3 xaxis_max = 5 xaxis_d = 2
startH = 0.001 topH = 200.0 zNum_ = 21 uStar = 0.4 kappa = 0.4 fig, ax = plt.subplots(figsize=(6,6)) colors = plt.cm.jet(np.linspace(0,1,tplotNum)) for i in range(tplotNum): zero = np.zeros(1) v_ = np.concatenate((zero, varplotList[i])) z_ = np.concatenate((zero, zSeq)) f = interp1d(z_, v_, kind='linear', fill_value='extrapolate') z_ = np.linspace(startH,topH,zNum_) dz = (topH - startH) / (zNum_-1) v_ = funcs.calc_deriv_1st_FD(dz, f(z_)) v_ = v_ * kappa * z_ / uStar plt.plot(v_, z_, label='t = ' + str(int(tplotList[i])) + 's', linewidth=1.0, color=colors[i]) plt.xlabel(r"$\mathrm{\phi_m}$") plt.ylabel('z (m)') xaxis_min = -3 xaxis_max = 5 xaxis_d = 2 yaxis_min = 0 yaxis_max = 200.0 yaxis_d = 20.0 plt.ylim(yaxis_min - 0.25*yaxis_d,yaxis_max) plt.xlim(xaxis_min - 0.25*xaxis_d,xaxis_max) plt.xticks(list(np.linspace(xaxis_min, xaxis_max, int((xaxis_max-xaxis_min)/xaxis_d)+1))) plt.yticks(list(np.linspace(yaxis_min, yaxis_max, int((yaxis_max-yaxis_min)/yaxis_d)+1))) plt.legend(bbox_to_anchor=(1.05,0.5), loc=6, borderaxespad=0) # (1.05,0.5) is the relative position of legend to the origin, loc is the reference point of the legend