Exemple #1
0
def fitness(data, label, zero_index, answer):
    out = np.zeros(5)
    if label == 3:
        out[0] = 1
    elif label == 5:
        out[1] = 1
    elif label == 6:
        out[2] = 1
    elif label == 7:
        out[3] = 1
    elif label == 9:
        out[4] = 1

    dd = data
    for e in range(20):
        dd[zero_index + e] = answer[e]
    label_arr = out
    model = load_model('./model.h5')
    g = [dd]
    res = model.predict(funcs.extract(g))
    label_classifier = res[0]  #

    score = 0
    for f in range(len(label_arr)):
        d = label_arr[f] - label_classifier[f]
        if d < 0:
            d *= -1
        score += d
    return 5 - score
Exemple #2
0
def extract():
    if "url" not in request.values:
        return response(400, msg="Missing parameter.")
    url = request.values["url"]
    return funcs.extract(url)
Exemple #3
0
    for item in label_train:
        out = np.zeros(5)
        if item == 3:
            out[0] = 1
        elif item == 5:
            out[1] = 1
        elif item == 6:
            out[2] = 1
        elif item == 7:
            out[3] = 1
        elif item == 9:
            out[4] = 1
        output_data.append(out)

    output_data = np.asarray(output_data)
    data_features = funcs.extract(data_train)
    print("===========================")
    print('Start NN')
    model = Sequential()
    model.add(Dense(100, activation='relu'))
    model.add(Dense(200, activation='relu'))
    model.add(Dense(4000, activation='sigmoid'))
    model.add(Dense(100, activation='softmax'))
    model.add(Dense(5, activation='sigmoid'))
    model.compile(loss='mean_squared_error',
                  optimizer='sgd',
                  metrics=['accuracy'])
    print("Start fit data")
    trainedModel = model.fit(data_features,
                             output_data,
                             epochs=100,
Exemple #4
0
    output_data = []
    for item in t_label:
        out = np.zeros(5)
        if item == 3:
            out[0] = 1
        elif item == 5:
            out[1] = 1
        elif item == 6:
            out[2] = 1
        elif item == 7:
            out[3] = 1
        elif item == 9:
            out[4] = 1
        output_data.append(out)
    output_data = np.asarray(output_data)
    f = funcs.extract(t_data)
    res = model.evaluate(f, output_data)
    print(res)
    print(model.metrics_names)

    res = model.predict(f)

    for i, item in enumerate(res):
        idxMax = np.argmax(item)
        predict = 0

        if idxMax == 0:
            predict = 3
        elif idxMax == 1:
            predict = 5
        elif idxMax == 2:
Exemple #5
0
import numpy as np
from keras.models import load_model
import funcs

model = load_model('./model.h5')
print("get test data")

data_test, label_test = funcs.get_test_data()
f = funcs.extract(data_test)

output_data = []
for item in label_test:
    out = np.zeros(5)
    if item == 3:
        out[0] = 1
    elif item == 5:
        out[1] = 1
    elif item == 6:
        out[2] = 1
    elif item == 7:
        out[3] = 1
    elif item == 9:
        out[4] = 1
    output_data.append(out)
output_data = np.asarray(output_data)

res = model.evaluate(f, output_data)
print(res)
print(model.metrics_names)

res = model.predict(f)