Exemple #1
0
def carveSeams(img, seams, show=False):

    h, w = img.shape[:2]
    seam_map = np.tile(np.arange(w), (h, 1))
    for i in range(seams):
        seam = getSeam(img)
        seam_map = removeSeam(seam_map, seam)
        img = removeSeam(img, seam)
        if show:
            funcs.show(img, False)
    return img, seam_map
Exemple #2
0
import numpy as np
import cv2
import funcs


img=cv2.imread("image.png",0)
img=np.float32(cv2.GaussianBlur(img,(5,5),0))
derivative_kernel=np.float32([[-1,0,1],[-2,0,2],[-1,0,1]])
Ix=cv2.filter2D(img, -1, derivative_kernel)
Iy=cv2.filter2D(img, -1, derivative_kernel.T)
I=Ix**2+Iy**2
funcs.show(I**.5)

path=I*1
kernel=np.float32([[1,1,1]])
h,w=img.shape[:2]
for i in range(1,h):
    row=path[i-1,:]
    row=cv2.erode(row,kernel.T)
    path[i:i+1,:]+=row.T
x=np.argmin(path[-1])
y=h-1
seam=[]
seam.append(x)
while y>0:
    y-=1
    x=x+1 or x or x-1
    seam.insert(x,0)
print seam

funcs.show(path)
src_pts = []
dst_pts = []
for match in matches:
    src_pts.append(kp1[match.queryIdx].pt)
    dst_pts.append(kp2[match.trainIdx].pt)
src_pts = np.array(src_pts)
dst_pts = np.array(dst_pts)

M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
img1_transformed = cv2.warpPrespective(img1, M, img1.shape[::-1])
"""
img=cv2.imread('image1.png',0)
#funcs.show(img)
#img=cross_correlate(img,51)
#funcs.show(img)
img=cv2.GaussianBlur(img,(5,5),0,borderType=cv2.BORDER_REFLECT_101)
kernel=np.array([[0,0,0],[1,0,-1],[0,0,0]])
Ix=cv2.filter2D(img,-1,kernel,borderType=cv2.BORDER_REFLECT_101)
Iy=cv2.filter2D(img,-1,kernel.T,borderType=cv2.BORDER_REFLECT_101)

thing=cv2.cornerHarris(np.uint8(img),2,3,0.04)
""" """Dilate makes local maxes stick out""" """
thing_dilate=cv2.dilate(thing,np.ones((15,15)))
corners=thing_dilate==thing
corners[thing<.1*thing.max()]=0
funcs.show(thing)
funcs.show(thing_dilate)
funcs.show(corners)
xs,ys=corners
"""
Exemple #4
0
        row = img[i]
        row = np.concatenate((row[:seam[i]], row[seam[i] + 1:]), axis=0)
        out[i] = row
    return out


def carveSeams(img, seams, show=False):

    h, w = img.shape[:2]
    seam_map = np.tile(np.arange(w), (h, 1))
    for i in range(seams):
        seam = getSeam(img)
        seam_map = removeSeam(seam_map, seam)
        img = removeSeam(img, seam)
        if show:
            funcs.show(img, False)
    return img, seam_map


img1 = cv2.imread('image1_small.png')
seam1 = getSeam(img1)
print "show seam"
img1 = showSeam(img1, seam1)
funcs.show(img1)

img3 = cv2.imread('image1_small.png')
img3 = img3
print "carve seam"
img3, _ = carveSeams(img3, 400, True)
funcs.show(img3)
    f.write(struct.pack("HHB", h, w, d))
    for num in flat:
        f.write(struct.pack("B", num))
    f.close()


def openImg(filename):
    f = file(filename + ".swrd", "rb")
    h, w, d = struct.unpack("HHB", f.read(5))
    shape = (h, w, d)
    nums = []
    for i in range(h * w * d):
        nums.append(struct.unpack("B", f.read(1)))
    img = np.uint8(nums)
    img = img.reshape(shape)
    #img+=16*np.random.rand(*shape)
    return np.uint8(img)


img = cv2.imread("image1.png")

#funcs.show(img)
save(img, "test2")

img2 = openImg("test2")
cv2.imwrite("test2.png", img2)
funcs.show(img2)

#img2=flat.reshape((500,333,3))
#funcs.show(img2)
Exemple #6
0
def test_funcs(img1, img2):
    img3 = img2

    funcs.show(img1)
    funcs.save(img1, filename='out_1.png')

    #funcs.getWidth funcs.getHeight
    print funcs.getWidth(img1), funcs.getHeight(img1)

    #funcs.mix
    mixed_pics = funcs.mix(img1, img3, .5)
    funcs.show(mixed_pics)

    #funcs.tint
    tinted_pic = funcs.tint(img1, (0, 0, 255), .5)
    funcs.show(tinted_pic)

    #funcs.grayscale
    gray_pic = funcs.grayscale(img1)
    funcs.show(gray_pic)
    gray_pic_2 = funcs.grayscale(img1, two_dimensional=True)
    funcs.show(gray_pic_2)

    #funcs.rotate
    img_rotate = funcs.rotate(img1, 180)
    funcs.show(img_rotate)