def solve(n_cells, degree=3, with_plot=False): # Problem x = Symbol('x') vvvv = -0.0625*x**3/pi**3 + 0.0625*x/pi**3 + sin(2*pi*x)/(16*pi**4) u = -vvvv.diff(x, 2) f = sin(2*pi*x) # As Expr u = Expression(u) f = Expression(f) vvvv = Expression(vvvv) # Space element = HermiteElement(degree) mesh = IntervalMesh(a=-1, b=1, n_cells=n_cells) V = FunctionSpace(mesh, element) bc = DirichletBC(V, vvvv) # Need mass matrix to intefrate the rhs M = assemble_matrix(V, 'mass', get_geom_tensor=None, timer=0) # NOTE We cannot you apply the alpha transform idea because the functions # are mapped with this selective weight on 2nd, 3rd functions. So some rows # of alpha would have to be multiplied by weights which are cell specific. # And then on top of this there would be a dx = J*dy term. Better just to # use the qudrature representations # Mpoly_matrix = leg.mass_matrix(degree) # M_ = assemble_matrix(V, Mpoly_matrix, Mget_geom_tensor, timer=0) # Stiffness matrix for Laplacian A = assemble_matrix(V, 'bending', get_geom_tensor=None, timer=0) # NOTE the above # Apoly_matrix = leg.stiffness_matrix(degree) # A_ = assemble_matrix(V, Apoly_matrix, Aget_geom_tensor, timer=0) # Interpolant of source fV = V.interpolate(f) # Integrate in L2 to get the vector b = M.dot(fV.vector) # Apply boundary conditions bc.apply(A, b, True) x = spsolve(A, b) print '>>>>', np.linalg.norm(x - V.interpolate(vvvv).vector) ALaplace = assemble_matrix(V, 'stiffness', get_geom_tensor=None, timer=0) c = ALaplace.dot(x) y = spsolve(M, c) uh = Function(V, y) # This is a (slow) way of plotting the high order if with_plot: fig = plt.figure() ax = fig.gca() uV = V.interpolate(u) for cell in Cells(mesh): a, b = cell.vertices[0, 0], cell.vertices[1, 0] x = np.linspace(a, b, 100) y = uh.eval_cell(x, cell) ax.plot(x, y, color=random.choice(['b', 'g', 'm', 'c'])) y = uV.eval_cell(x, cell) ax.plot(x, y, color='r') y = u.eval_cell(x, cell) ax.plot(x, y, color='k') plt.show() # Error norm fine_degree = degree + 3 element = HermiteElement(fine_degree) V_fine = FunctionSpace(mesh, element) # Interpolate exact solution to fine u_fine = V_fine.interpolate(u) # Interpolate approx solution fine uh_fine = V_fine.interpolate(uh) # Difference vector e = u_fine.vector - uh_fine.vector # Integrate the error A_fine = assemble_matrix(V_fine, 'mass', get_geom_tensor=None, timer=0) e = sqrt(np.sum(e*A_fine.dot(e))) # Mesh size hmin = mesh.hmin() # Add the cond number kappa = np.linalg.cond(A.toarray()) return hmin, e, kappa, A.shape[0]
def solve(n_cells, degree=3, with_plot=False): # Problem w = 3 * np.pi x = Symbol("x") u = sin(w * x) f = -u.diff(x, 2) # As Expr u = Expression(u) f = Expression(f) # Space # element = HermiteElement(degree) poly_set = leg.basis_functions(degree) dof_set = chebyshev_points(degree) element = LagrangeElement(poly_set, dof_set) mesh = IntervalMesh(a=-1, b=1, n_cells=n_cells) V = FunctionSpace(mesh, element) bc = DirichletBC(V, u) # Need mass matrix to intefrate the rhs M = assemble_matrix(V, "mass", get_geom_tensor=None, timer=0) # NOTE We cannot you apply the alpha transform idea because the functions # are mapped with this selective weight on 2nd, 3rd functions. So some rows # of alpha would have to be multiplied by weights which are cell specific. # And then on top of this there would be a dx = J*dy term. Better just to # use the qudrature representations # Mpoly_matrix = leg.mass_matrix(degree) # M_ = assemble_matrix(V, Mpoly_matrix, Mget_geom_tensor, timer=0) # Stiffness matrix for Laplacian A = assemble_matrix(V, "stiffness", get_geom_tensor=None, timer=0) # NOTE the above # Apoly_matrix = leg.stiffness_matrix(degree) # A_ = assemble_matrix(V, Apoly_matrix, Aget_geom_tensor, timer=0) # Interpolant of source fV = V.interpolate(f) # Integrate in L2 to get the vector b = M.dot(fV.vector) # Apply boundary conditions bc.apply(A, b, True) x = spsolve(A, b) # As function uh = Function(V, x) # This is a (slow) way of plotting the high order if with_plot: fig = plt.figure() ax = fig.gca() uV = V.interpolate(u) for cell in Cells(mesh): a, b = cell.vertices[0, 0], cell.vertices[1, 0] x = np.linspace(a, b, 100) y = uh.eval_cell(x, cell) ax.plot(x, y, color=random.choice(["b", "g", "m", "c"])) y = uV.eval_cell(x, cell) ax.plot(x, y, color="r") y = u.eval_cell(x, cell) ax.plot(x, y, color="k") plt.show() # Error norm in CG high order fine_degree = degree + 3 poly_set = leg.basis_functions(fine_degree) dof_set = chebyshev_points(fine_degree) element = LagrangeElement(poly_set, dof_set) V_fine = FunctionSpace(mesh, element) # Interpolate exact solution to fine u_fine = V_fine.interpolate(u) # Interpolate approx solution fine uh_fine = V_fine.interpolate(uh) # Difference vector e = u_fine.vector - uh_fine.vector # L2 if False: Apoly_matrix = leg.mass_matrix(fine_degree) get_geom_tensor = lambda cell: 1.0 / cell.Jac # Need matrix for integration of H10 norm else: Apoly_matrix = leg.stiffness_matrix(fine_degree) get_geom_tensor = lambda cell: cell.Jac A_fine = assemble_matrix(V_fine, Apoly_matrix, get_geom_tensor, timer=0) # Integrate the error e = sqrt(np.sum(e * A_fine.dot(e))) # Mesh size hmin = mesh.hmin() # Add the cond number kappa = np.linalg.cond(A.toarray()) return hmin, e, kappa, A.shape[0]