def cal_three_mse(r_list, ap_list, seed_list, iteration, use_data, program_num, c_method):
    result = np.zeros([len(seed_list), len(ap_list), 3])  # [0]:ori-nmf  [1]:ori-snmf  [2]:nmf-snmf

    v_original, im_var, im_hol = ipf.read_pgm("/home/ionishi/mnt/workspace/sketchingNMF/face_data/" + use_data)
    v_list = np.zeros([v_original.shape[0], v_original.shape[1], 3])  # [0]:original  [1]:snmf  [2]:nmf
    v_list[:, :, 0] = v_original

    for ap_i, ap in enumerate(ap_list):
        for seed_i, seed in enumerate(seed_list):
            path, file_name = ff.path_and_file_name(r_list[0], ap, iteration, seed, use_data, program_num, c_method,
                                                    "r,k", directory="matrix")
            v_list[:, :, 1] = ipf.calculate_v(path, file_name, snmf=True)
            path, file_name = ff.path_and_file_name(r_list[0], ap_list[-1], iteration, seed, use_data, program_num, c_method,
                                                    "r,k", directory="matrix")
            v_list[:, :, 2] = ipf.calculate_v(path, file_name, snmf=False)
            for i in range(3):
                result[seed_i, ap_i, (i + 1) % 3] = ipf.mse_calculate(v_list[:, :, i], v_list[:, :, (i + 1) % 3])
    return result
Exemple #2
0
    r_list, r_list_size, ap_list, ap_list_size, seed_list, seed_list_size = ff.parallel_make_list(tmp[2:])

    # r_list_size = len(r_list)
    # ap_list_size = len(ap_list)
    # seed_list_size = len(seed_list)

    os.makedirs(w_path, exist_ok=True)

    # last 1%  of iteration error average  -----------------------------------------------------------------------------
    NMF_e_result = np.zeros([r_list_size, ap_list_size, seed_list_size])
    SNMF_e_result = np.zeros([r_list_size, ap_list_size, seed_list_size])

    for r_i, r in enumerate(r_list):
        for ap_i, ap in enumerate(ap_list):
            for seed_i, seed in enumerate(seed_list):
                pr_path, pr_file_name = ff.path_and_file_name(r, ap, ite, seed, use_data, program_num, c_method, "r,k", directory="error")
                error_M = pd.read_csv(pr_path + pr_file_name + "_error.csv")
                e_result = error_M.iloc[int(-0.01 * ite):].mean()
                NMF_e_result[r_i, ap_i, seed_i] = e_result["NMF error"]
                SNMF_e_result[r_i, ap_i, seed_i] = e_result["SNMF error"]

    NMF_e_result = np.mean(NMF_e_result, axis=2)
    SNMF_e_result = np.mean(SNMF_e_result, axis=2)

    NMF_e_result = np.mean(NMF_e_result, axis=1)
    df_e_result = pd.DataFrame({"k=" + str(ap_list[0]): SNMF_e_result[0, 0]}, index=["r=" + str(r_list[0])])
    for r_i, r in enumerate(r_list[1:]):
        df_e_result.loc["r=" + str(r)] = SNMF_e_result[r_i + 1, 0]
    for ap_i, k in enumerate(ap_list[1:]):
        df_e_result["k=" + str(k)] = SNMF_e_result[:, ap_i + 1]
    df_e_result["NMF"] = NMF_e_result
        use_data, c_method, seed_list))

    for wh_seed in seed_list:
        original_v, im_var, im_hol = ipf.read_pgm(
            "/home/ionishi/mnt/workspace/sketchingNMF/face_data/" + use_data)
        error_map = np.zeros([im_var, im_hol, len(image_num_list), 3])

        for r in plot_r_list:
            for ap in plot_ap_list:
                for im_i, im_num in enumerate(image_num_list):
                    read_path, read_file_name = ff.path_and_file_name(
                        r,
                        ap,
                        ite,
                        wh_seed,
                        use_data,
                        program_num,
                        c_method,
                        "r,k",
                        real_or_not=real_or_not,
                        directory="matrix",
                        space=space)
                    write_path = "/home/ionishi/mnt/workspace/sketchingNMF/{}/{}/{}/{}/Emap_wh_seed={}/" \
                        .format(use_data, w_program_num, c_method, "error_map", wh_seed)
                    os.makedirs(write_path, exist_ok=True)
                    Emap_nmf_v = ipf.calculate_v(read_path,
                                                 read_file_name,
                                                 snmf=False)
                    Emap_snmf_v = ipf.calculate_v(read_path,
                                                  read_file_name,
                                                  snmf=True)
os.makedirs(w_path, exist_ok=True)

print("start  {}  {}  {} >>>>>".format(w_program_num, use_data, c_method))
# time measurement--------------------------------------------------------------------------------------------------

nmf_t_result = np.zeros([r_list_size, seed_list_size])
snmf_t_result = np.zeros([r_list_size, ap_list_size, seed_list_size])

for r_i, r in enumerate(r_list):
    for ap_i, ap in enumerate(ap_list):
        for seed_i, seed in enumerate(seed_list):
            pr_path, pr_file_name = ff.path_and_file_name(r,
                                                          ap,
                                                          ite,
                                                          seed,
                                                          use_data,
                                                          program_num,
                                                          c_method,
                                                          "r,k",
                                                          directory="time",
                                                          space=space)
            t_result = pd.read_csv(pr_path + pr_file_name + ".csv")
            snmf_t_result[r_i, ap_i, seed_i] = t_result["SNMF time"]
            if ap == ap_list[-1]:
                nmf_t_result[r_i, seed_i] = t_result["NMF time"]

nmf_t_result = np.mean(nmf_t_result, axis=1)
snmf_t_result = np.mean(snmf_t_result, axis=2)

df_t_result = pd.DataFrame({"k=" + str(ap_list[0]): snmf_t_result[0, 0]},
                           index=["r=" + str(r_list[0])])
for r_i, r in enumerate(r_list[1:]):