Exemple #1
0
def job_new_share(start, end):
    df_col_list = dbs["stock_basic"]["new_share"]["query_cols"].split(",")
    day_interval = (end - start).days
    if day_interval > 3000:
        gap = day_interval
        for i in range(3000, 0, -1):
            if gap % i == 0:
                day_interval = i
                break
    new_share = pd.DataFrame(columns=df_col_list)
    num = (end - start).days
    pro = ts.pro_api()
    for i in range(0, num, day_interval):
        new_share = new_share.append(
            pro.new_share(
                start_date=(start +
                            datetime.timedelta(days=i)).strftime('%Y%m%d'),
                end_date=(start + datetime.timedelta(days=i + day_interval)
                          ).strftime('%Y%m%d'),
                fields=dbs["stock_basic"]["new_share"]["query_cols"]))
    float_to_str_list = [
        'issue_date', 'amount', 'market_amount', 'price', 'pe', 'limit_amount',
        'funds', 'ballot'
    ]
    new_share = basicFunctions.floatToStr(new_share, float_to_str_list, False)
    sqlFunctions.insertSql(
        "stock_basic", new_share, "new_share",
        tuple(dbs["stock_basic"]["new_share"]["query_cols"].split(",")))
Exemple #2
0
def get_stock_company(first):
    pro = ts.pro_api()
    sse_stock_company = pro.stock_company(
        fields=dbs["stock_basic"]["stock_company"]["query_cols"])
    szse_stock_company = pro.stock_company(
        exchange='SZSE',
        fields=dbs["stock_basic"]["stock_company"]["query_cols"])
    stock_company = sse_stock_company.append(szse_stock_company)
    float_to_str_list = ['reg_capital']
    stock_company = basicFunctions.floatToStr(stock_company, float_to_str_list,
                                              False)
    float_to_int_to_str_list = ['employees']
    stock_company = basicFunctions.floatToStr(stock_company,
                                              float_to_int_to_str_list, True)
    sqlFunctions.insertSql(
        "stock_basic", stock_company, "stock_company",
        tuple(dbs["stock_basic"]["stock_company"]["query_cols"].split(",")))
    with open(basicFunctions.lockF, 'w') as f:
        f.write("1")
    print("已获取上市公司基本信息")
Exemple #3
0
def job_stk_rewards(ts_code_listStr):
    df_col_list = dbs["stock_basic"]["stk_rewards"]["query_cols"].split(",")
    interval = 50
    stk_rewards = pd.DataFrame(columns=df_col_list)
    pro = ts.pro_api()
    print("正在获取", ts_code_listStr[:9], "等管理层薪酬和持股")
    for i in range(0, len(ts_code_listStr), interval):
        stk_rewards = stk_rewards.append(
            pro.stk_rewards(
                ts_code=ts_code_listStr[i:i + interval],
                fields=dbs["stock_basic"]["stk_rewards"]["query_cols"]))
        time.sleep(0.6)
    float_to_str_list = ['reward']
    stk_rewards = basicFunctions.floatToStr(stk_rewards, float_to_str_list,
                                            False)
    float_to_int_to_str_list = ['hold_vol']
    stk_rewards = basicFunctions.floatToStr(stk_rewards,
                                            float_to_int_to_str_list, True)
    print("stock_basic.stk_rewards 开始插入:", len(stk_rewards))
    sqlFunctions.insertSql(
        "stock_basic", stk_rewards, "stk_rewards",
        tuple(dbs["stock_basic"]["stk_rewards"]["query_cols"].split(",")))
Exemple #4
0
def get_moneyflow(start_dt, ts_code):
    df_col_list = dbs["stock_daily"]["moneyflow"]["query_cols"].split(",")
    moneyflow = pd.DataFrame(columns=df_col_list)
    day_interval = 2000
    start_dt_query = start_dt
    if start_dt == "19901219":
        time_temp = datetime.datetime(
            1990, 12, 19) + datetime.timedelta(days=day_interval)
        end_dt_query = time_temp.strftime('%Y%m%d')
    else:
        time_temp = datetime.datetime.now()
        end_dt_query = end_dt
    pro = ts.pro_api()
    while start_dt_query <= end_dt:
        moneyflow = moneyflow.append(pro.moneyflow(
            ts_code=ts_code.replace("_", "."),
            start_date=start_dt_query,
            end_date=end_dt_query,
            fields=dbs["stock_daily"]["moneyflow"]["query_cols"]),
                                     sort=False)
        time.sleep(0.6)
        time_temp = time_temp + datetime.timedelta(days=1)
        start_dt_query = time_temp.strftime('%Y%m%d')
        time_temp = time_temp + datetime.timedelta(days=day_interval)
        end_dt_query = time_temp.strftime('%Y%m%d')
    if moneyflow is not None:
        if len(moneyflow) > 0:
            float_to_str_list = [
                "buy_sm_vol", "buy_sm_amount", "sell_sm_vol", "sell_sm_amount",
                "buy_md_vol", "buy_md_amount", "sell_md_vol", "sell_md_amount",
                "buy_lg_vol", "buy_lg_amount", "sell_lg_vol", "sell_lg_amount",
                "buy_elg_vol", "buy_elg_amount", "sell_elg_vol",
                "sell_elg_amount", "net_mf_vol", "net_mf_amount"
            ]
            moneyflow = basicFunctions.floatToStr(moneyflow, float_to_str_list,
                                                  False)
            print("开始插入", ts_code, "个股资金流向数据:", len(moneyflow))
            sqlFunctions.insertSql(
                "stock_daily", moneyflow, ts_code,
                tuple(
                    dbs["stock_daily"]["moneyflow"]["query_cols"].split(",")))
        else:
            print(ts_code, "无个股资金流向数据")
    else:
        print(ts_code, "无个股资金流向数据")
Exemple #5
0
def get_daily_basic(start_dt, ts_code):
    df_col_list = dbs["stock_daily"]["daily_basic"]["query_cols"].split(",")
    daily_basic = pd.DataFrame(columns=df_col_list)
    day_interval = 2000
    start_dt_query = start_dt
    if start_dt == "19901219":
        time_temp = datetime.datetime(
            1990, 12, 19) + datetime.timedelta(days=day_interval)
        end_dt_query = time_temp.strftime('%Y%m%d')
    else:
        time_temp = datetime.datetime.now()
        end_dt_query = end_dt
    pro = ts.pro_api()
    while start_dt_query <= end_dt:
        daily_basic = daily_basic.append(pro.daily_basic(
            ts_code=ts_code.replace("_", "."),
            start_date=start_dt_query,
            end_date=end_dt_query,
            fields=dbs["stock_daily"]["daily_basic"]["query_cols"]),
                                         sort=False)
        time.sleep(0.6)
        time_temp = time_temp + datetime.timedelta(days=1)
        start_dt_query = time_temp.strftime('%Y%m%d')
        time_temp = time_temp + datetime.timedelta(days=day_interval)
        end_dt_query = time_temp.strftime('%Y%m%d')
    if daily_basic is not None:
        if len(daily_basic) > 0:
            float_to_str_list = [
                "turnover_rate", "turnover_rate_f", "volume_ratio", "pe",
                "pe_ttm", "pb", "ps", "ps_ttm", "total_share", "float_share",
                "free_share", "total_mv", "circ_mv"
            ]
            daily_basic = basicFunctions.floatToStr(daily_basic,
                                                    float_to_str_list, False)
            print("开始插入", ts_code, "每日指标数据:", len(daily_basic))
            sqlFunctions.insertSql(
                "stock_daily", daily_basic, ts_code,
                tuple(dbs["stock_daily"]["daily_basic"]["query_cols"].split(
                    ",")))
        else:
            print(ts_code, "无每日指标数据")
    else:
        print(ts_code, "无每日指标数据")
Exemple #6
0
def get_daily(start_dt, ts_code):
    df_col_list = dbs["stock_daily"]["daily"]["query_cols"].replace(
        "change_", "change").split(",")
    daily = pd.DataFrame(columns=df_col_list)
    day_interval = 2000
    start_dt_query = start_dt
    if start_dt == "19901219":
        time_temp = datetime.datetime(
            1990, 12, 19) + datetime.timedelta(days=day_interval)
        end_dt_query = time_temp.strftime('%Y%m%d')
    else:
        time_temp = datetime.datetime.now()
        end_dt_query = end_dt
    pro = ts.pro_api()
    while start_dt_query <= end_dt:
        daily = daily.append(pro.daily(
            ts_code=ts_code.replace("_", "."),
            start_date=start_dt_query,
            end_date=end_dt_query,
            fields=dbs["stock_daily"]["daily"]["query_cols"].replace(
                "change_", "change")),
                             sort=False)
        time.sleep(0.6)
        time_temp = time_temp + datetime.timedelta(days=1)
        start_dt_query = time_temp.strftime('%Y%m%d')
        time_temp = time_temp + datetime.timedelta(days=day_interval)
        end_dt_query = time_temp.strftime('%Y%m%d')
    if daily is not None:
        if len(daily) > 0:
            float_to_str_list = [
                "open", "high", "low", "close", "pre_close", "change",
                "pct_chg", "vol", "amount"
            ]
            daily = basicFunctions.floatToStr(daily, float_to_str_list, False)
            print("开始插入", ts_code, "日线行情数据:", len(daily))
            sqlFunctions.insertSql(
                "stock_daily", daily, ts_code,
                tuple(dbs["stock_daily"]["daily"]["query_cols"].split(",")))
        else:
            print(ts_code, "无日线行情数据")
    else:
        print(ts_code, "无日线行情数据")
Exemple #7
0
def get_stk_limit(start_dt, ts_code):
    df_col_list = dbs["stock_daily"]["stk_limit"]["query_cols"].split(",")
    stk_limit = pd.DataFrame(columns=df_col_list)
    day_interval = 2000
    start_dt_query = start_dt
    if start_dt == "19901219":
        time_temp = datetime.datetime(
            1990, 12, 19) + datetime.timedelta(days=day_interval)
        end_dt_query = time_temp.strftime('%Y%m%d')
    else:
        time_temp = datetime.datetime.now()
        end_dt_query = end_dt
    pro = ts.pro_api()
    while start_dt_query <= end_dt:
        stk_limit = stk_limit.append(pro.stk_limit(
            ts_code=ts_code.replace("_", "."),
            start_date=start_dt_query,
            end_date=end_dt_query,
            fields=dbs["stock_daily"]["stk_limit"]["query_cols"]),
                                     sort=False)
        time.sleep(0.6)
        time_temp = time_temp + datetime.timedelta(days=1)
        start_dt_query = time_temp.strftime('%Y%m%d')
        time_temp = time_temp + datetime.timedelta(days=day_interval)
        end_dt_query = time_temp.strftime('%Y%m%d')
    if stk_limit is not None:
        if len(stk_limit) > 0:
            float_to_str_list = ["up_limit", "down_limit"]
            stk_limit = basicFunctions.floatToStr(stk_limit, float_to_str_list,
                                                  False)
            print("开始插入", ts_code, "每日涨跌停价格数据:", len(stk_limit))
            sqlFunctions.insertSql(
                "stock_daily", stk_limit, ts_code,
                tuple(
                    dbs["stock_daily"]["stk_limit"]["query_cols"].split(",")))
        else:
            print(ts_code, "无每日涨跌停价格数据")
    else:
        print(ts_code, "无每日涨跌停价格数据")