Exemple #1
0
def main(files, out):
    """
    files: url to an .nc/.ncml file or the path to a text file containing .nc/.ncml links. A # at the front will skip links in the text file.
    out: Directory to save plots
    """
    fname, ext = os.path.splitext(files)
    if ext in '.nc':
        list_files = [files]
    elif ext in '.ncml':
        list_files = [files]
    else:
        list_files = read_file(files)

    stream_vars = pf.load_variable_dict(var='eng')  # load engineering variables
    # for nc in list_files:
    #     print nc

        # the engine that xarray uses can be changed as specified here 
        # http://xarray.pydata.org/en/stable/generated/xarray.open_dataset.html#xarray.open_dataset

    with xr.open_mfdataset(list_files, engine='netcdf4') as ds_disk:

        # change dimensions from 'obs' to 'time'
        ds_disk = ds_disk.swap_dims({'obs': 'time'})
        ds_variables = ds_disk.data_vars.keys()  # List of dataset variables
        stream = ds_disk.stream  # List stream name associated with the data
        title_pre = mk_str(ds_disk.attrs, 't')  # , var, tt0, tt1, 't')
        save_pre = mk_str(ds_disk.attrs, 's')  # , var, tt0, tt1, 's')
        save_dir = os.path.join(out, ds_disk.subsite, ds_disk.node, ds_disk.stream, 'pcolor')
        cf.create_dir(save_dir)

        # t0, t1 = cf.get_rounded_start_and_end_times(ds_disk['time'].data)
        # tI = t0 + t1 - (t0 / 2)
        # time_list = [[t0, t1], [t0, tI], [tI, t1]]
        # time_list = [[t0, t1]]

        # for period in time_list:
        #     tt0 = period[0]
        #     tt1 = period[1]
        #     sub_ds = ds_disk.sel(time=slice(str(tt0), str(tt1)))
        bins = ds_disk['bin_depths']
        north = ds_disk['northward_seawater_velocity']
        east = ds_disk['eastward_seawater_velocity']
        # up = ds_disk['upward_seawater_velocity']
        # error = ds_disk['error_velocity']

        time = dict(data=ds_disk['time'].data, info=dict(label=ds_disk['time'].standard_name, units='GMT'))
        bins = dict(data=bins.data.T, info=dict(label=bins.long_name, units=bins.units))
        north = dict(data=north.data.T, info=dict(label=north.long_name, units=north.units))
        east = dict(data=east.data.T, info=dict(label=east.long_name, units=east.units))
        # up = dict(data=up.data.T, info=dict(label=up.long_name, units=up.units))
        # error = dict(data=error.data.T, info=dict(label=error.long_name, units=error.units))

        sname = save_pre + 'ADCP'
        title = title_pre
        fig, axs = pf.adcp(time, bins, north, east, title)
        pf.resize(width=12, height=8.5)  # Resize figure
        pf.save_fig(save_dir, sname, res=250)  # Save figure
        plt.close('all')
Exemple #2
0
def main(files, out, time_break, depth):
    """
    files: url to an .nc/.ncml file or the path to a text file containing .nc/.ncml links. A # at the front will skip links in the text file.
    out: Directory to save plots
    """
    fname, ext = os.path.splitext(files)
    if ext in '.nc':
        list_files = [files]
    elif ext in '.ncml':
        list_files = [files]
    else:
        list_files = read_file(files)

    stream_vars = pf.load_variable_dict(var='eng')  # load engineering variables
    for nc in list_files:
        print nc
        with xr.open_dataset(nc, mask_and_scale=False) as ds:
            # change dimensions from 'obs' to 'time'
            ds = ds.swap_dims({'obs': 'time'})
            ds_variables = ds.data_vars.keys()  # List of dataset variables
            stream = ds.stream  # List stream name associated with the data
            title_pre = mk_str(ds.attrs, 't')  # , var, tt0, tt1, 't')
            save_pre = mk_str(ds.attrs, 's')  # , var, tt0, tt1, 's')
            platform = ds.subsite
            node = ds.node
            sensor = ds.sensor
            deployment = 'D0000{}'.format(str(np.unique(ds.deployment)[0]))
            stream = ds.stream
            save_dir = os.path.join(out, platform, deployment, node, sensor, stream, 'depth_profiles')
            cf.create_dir(save_dir)

            # try:
            #     eng = stream_vars[stream]  # select specific streams engineering variables
            # except KeyError:
            #     eng = ['']

            misc = ['quality', 'string', 'timestamp', 'deployment', 'id', 'provenance', 'qc',  'time', 'mission', 'obs',
            'volt', 'ref', 'sig', 'amp', 'rph', 'calphase', 'phase', 'therm']

            # reg_ex = re.compile('|'.join(eng+misc))  # make regular expression
            reg_ex = re.compile('|'.join(misc))

            #  keep variables that are not in the regular expression
            sci_vars = [s for s in ds_variables if not reg_ex.search(s)]

            # t0, t1 = pf.get_rounded_start_and_end_times(ds_disk['time'].data)
            # tI = (pd.to_datetime(t0) + (pd.to_datetime(t1) - pd.to_datetime(t0)) / 2)
            # time_list = [[t0, t1], [t0, tI], [tI, t1]]


            times = np.unique(ds[time_break])
            for t in times:
                time_ind = t == ds[time_break].data

                for var in sci_vars:
                    x = dict(data=ds['time'].data[time_ind],
                             info=dict(label='Time', units='GMT'))
                    t0 = pd.to_datetime(x['data'].min()).strftime('%Y-%m-%dT%H%M%00')
                    t1 = pd.to_datetime(x['data'].max()).strftime('%Y-%m-%dT%H%M%00')
                    try:
                        sci = ds[var]
                        print var
                        # sci = sub_ds[var]
                    except UnicodeEncodeError: # some comments have latex characters
                        ds[var].attrs.pop('comment')  # remove from the attributes
                        sci = ds[var]  # or else the variable won't load


                    y = dict(data=ds[depth].data[time_ind], info=dict(label='Pressure', units='dbar', var=var,
                                                                platform=platform, node=node, sensor=sensor))

                    try:
                        z_lab = sci.long_name
                    except AttributeError:
                        z_lab = sci.standard_name
                    z = dict(data=sci.data[time_ind], info=dict(label=z_lab, units=sci.units, var=var,
                                                                platform=platform, node=node, sensor=sensor))

                    title = title_pre + var

                    # plot timeseries with outliers
                    fig, ax = pf.depth_cross_section(z, y, x, title=title)
                    pf.resize(width=12, height=8.5)  # Resize figure

                    save_name = '{}-{}-{}_{}_{}-{}'.format(platform, node, sensor, var, t0, t1)
                    pf.save_fig(save_dir, save_name, res=150)  # Save figure
                    plt.close('all')
                    # try:
                    #     y_lab = sci.standard_name
                    # except AttributeError:
                    #     y_lab = var
                    # y = dict(data=sci.data, info=dict(label=y_lab, units=sci.units))

                del x, y
def main(files, out, east_var, north_var, up_var, err_var):
    """
    files: url to an .nc/.ncml file or the path to a text file containing .nc/.ncml links. A # at the front will skip links in the text file.
    out: Directory to save plots
    """
    fname, ext = os.path.splitext(files)
    if ext in '.nc':
        list_files = [files]
    elif ext in '.ncml':
        list_files = [files]
    else:
        list_files = read_file(files)

    stream_vars = pf.load_variable_dict(var='eng')  # load engineering variables
    # for nc in list_files:
    #     print nc

        # the engine that xarray uses can be changed as specified here 
        # http://xarray.pydata.org/en/stable/generated/xarray.open_dataset.html#xarray.open_dataset
    for nc in list_files:
        print nc
        with xr.open_dataset(nc, mask_and_scale=False) as ds_disk:
            #with xr.open_mfdataset(nc, engine='netcdf4') as ds_disk:
            # change dimensions from 'obs' to 'time'
            ds_disk = ds_disk.swap_dims({'obs': 'time'})
            ds_variables = ds_disk.data_vars.keys()  # List of dataset variables
            stream = ds_disk.stream  # List stream name associated with the data
            deployment = 'D0000{}'.format(str(numpy.unique(ds_disk.deployment)[0]))
            title_pre = mk_str(ds_disk.attrs, 't')  # , var, tt0, tt1, 't')
            save_pre = mk_str(ds_disk.attrs, 's')  # , var, tt0, tt1, 's')
            save_dir = os.path.join(out, ds_disk.subsite, deployment, ds_disk.node, ds_disk.stream, 'pcolor')
            cf.create_dir(save_dir)

            # t0, t1 = cf.get_rounded_start_and_end_times(ds_disk['time'].data)
            # tI = t0 + t1 - (t0 / 2)
            # time_list = [[t0, t1], [t0, tI], [tI, t1]]
            # time_list = [[t0, t1]]

            # for period in time_list:
            #     tt0 = period[0]
            #     tt1 = period[1]
            #     sub_ds = ds_disk.sel(time=slice(str(tt0), str(tt1)))

            north = ds_disk[north_var]
            east = ds_disk[east_var]
            up = ds_disk[up_var]
            error = ds_disk[err_var]

            try:
                bins = ds_disk['bin_depths']
                bins = dict(data=bins.data.T, info=dict(label=bins.long_name, units=bins.units))
            except KeyError:
                # use the matrix indices to plot
                bins = numpy.zeros_like(east.data)
                for i, item in enumerate(east):
                    for jj, xtem in enumerate(east[i]):
                        bins[i][jj] = jj
                bins = numpy.reshape(bins,(bins.shape[-1],bins.shape[0]))
                bins = dict(data=bins, label='bin_indices', units='')

                # the correct way to do this is to calculate the bin_depths, for that you need:
                # 9 First Cell Range(meters) (rounded bin_1_distance average, m)
                # 73 deployment depth of the ADCP instrument (pull from asset-management, depth in m)
                # 21 number of bins (num_cells, m)
                # 4  cell length (cell_length, m)
                # equation with the numbers above would be:
                # depths = 73 - 9 - ([1:21]-1)*4;



            time = dict(data=ds_disk['time'].data, info=dict(label=ds_disk['time'].standard_name, units='GMT'))
            #bins = dict(data=bins.data.T, info=dict(label=bins.long_name, units=bins.units))
            north = dict(data=north.data.T, info=dict(label=north.long_name, units=north.units))
            east = dict(data=east.data.T, info=dict(label=east.long_name, units=east.units))
            up = dict(data=up.data.T, info=dict(label=up.long_name, units=up.units))
            error = dict(data=error.data.T, info=dict(label=error.long_name, units=error.units))

            sname_ew = save_pre + 'E-W-ADCP'
            title = title_pre
            fig, axs = pf.adcp(time, bins, north, east, title)
            pf.resize(width=12, height=8.5)  # Resize figure
            pf.save_fig(save_dir, sname_ew, res=250)  # Save figure

            sname_ur = save_pre + 'U-R-ADCP'
            fig, axs = pf.adcp(time, bins, up, error, title)
            pf.resize(width=12, height=8.5)  # Resize figure
            pf.save_fig(save_dir, sname_ur, res=250)  # Save figure

            plt.close('all')
Exemple #4
0
def main(files, out):
    """
    files: url to an .nc/.ncml file or the path to a text file containing .nc/.ncml links. A # at the front will skip links in the text file.
    out: Directory to save plots
    """
    fname, ext = os.path.splitext(files)
    if ext in '.nc':
        list_files = [files]
    elif ext in '.ncml':
        list_files = [files]
    else:
        list_files = read_file(files)

    stream_vars = pf.load_variable_dict(
        var='eng')  # load engineering variables
    # for nc in list_files:
    #     print nc

    # the engine that xarray uses can be changed as specified here
    # http://xarray.pydata.org/en/stable/generated/xarray.open_dataset.html#xarray.open_dataset

    with xr.open_mfdataset(list_files, engine='netcdf4') as ds_disk:

        # change dimensions from 'obs' to 'time'
        ds_disk = ds_disk.swap_dims({'obs': 'time'})
        ds_variables = ds_disk.data_vars.keys()  # List of dataset variables
        stream = ds_disk.stream  # List stream name associated with the data
        title_pre = mk_str(ds_disk.attrs, 't')  # , var, tt0, tt1, 't')
        save_pre = mk_str(ds_disk.attrs, 's')  # , var, tt0, tt1, 's')
        save_dir = os.path.join(out, ds_disk.subsite, ds_disk.node,
                                ds_disk.stream, 'pcolor')
        cf.create_dir(save_dir)

        # t0, t1 = cf.get_rounded_start_and_end_times(ds_disk['time'].data)
        # tI = t0 + t1 - (t0 / 2)
        # time_list = [[t0, t1], [t0, tI], [tI, t1]]
        # time_list = [[t0, t1]]

        # for period in time_list:
        #     tt0 = period[0]
        #     tt1 = period[1]
        #     sub_ds = ds_disk.sel(time=slice(str(tt0), str(tt1)))
        bins = ds_disk['bin_depths']
        north = ds_disk['northward_seawater_velocity']
        east = ds_disk['eastward_seawater_velocity']
        # up = ds_disk['upward_seawater_velocity']
        # error = ds_disk['error_velocity']

        time = dict(data=ds_disk['time'].data,
                    info=dict(label=ds_disk['time'].standard_name,
                              units='GMT'))
        bins = dict(data=bins.data.T,
                    info=dict(label=bins.long_name, units=bins.units))
        north = dict(data=north.data.T,
                     info=dict(label=north.long_name, units=north.units))
        east = dict(data=east.data.T,
                    info=dict(label=east.long_name, units=east.units))
        # up = dict(data=up.data.T, info=dict(label=up.long_name, units=up.units))
        # error = dict(data=error.data.T, info=dict(label=error.long_name, units=error.units))

        sname = save_pre + 'ADCP'
        title = title_pre
        fig, axs = pf.adcp(time, bins, north, east, title)
        pf.resize(width=12, height=8.5)  # Resize figure
        pf.save_fig(save_dir, sname, res=250)  # Save figure
        plt.close('all')
Exemple #5
0
def main(files, out, time_break):
    """
    files: url to an .nc/.ncml file or the path to a text file containing .nc/.ncml links. A # at the front will skip links in the text file.
    out: Directory to save plots
    """

    fname, ext = os.path.splitext(files)
    if ext in '.nc':
        list_files = [files]
    elif ext in '.ncml':
        list_files = [files]
    else:
        list_files = read_file(files)

    stream_vars = pf.load_variable_dict(
        var='eng')  # load engineering variables
    for nc in list_files:
        print nc
        with xr.open_dataset(nc, mask_and_scale=False) as ds:
            # change dimensions from 'obs' to 'time'
            ds = ds.swap_dims({'obs': 'time'})
            ds_variables = ds.data_vars.keys()  # List of dataset variables
            stream = ds.stream  # List stream name associated with the data
            title_pre = mk_str(ds.attrs, 't')  # , var, tt0, tt1, 't')
            save_pre = mk_str(ds.attrs, 's')  # , var, tt0, tt1, 's')
            platform = ds.subsite
            node = ds.node
            sensor = ds.sensor
            save_dir = os.path.join(out, ds.subsite, ds.node, ds.stream,
                                    'timeseries')
            cf.create_dir(save_dir)
            try:
                eng = stream_vars[
                    stream]  # select specific streams engineering variables
            except KeyError:
                eng = ['']

            misc = [
                'timestamp', 'provenance', 'qc', 'id', 'obs', 'deployment',
                'volts', 'counts', 'quality_flag'
            ]

            reg_ex = re.compile('|'.join(eng +
                                         misc))  # make regular expression

            #  keep variables that are not in the regular expression
            sci_vars = [s for s in ds_variables if not reg_ex.search(s)]

            # t0, t1 = pf.get_rounded_start_and_end_times(ds_disk['time'].data)
            # tI = (pd.to_datetime(t0) + (pd.to_datetime(t1) - pd.to_datetime(t0)) / 2)
            # time_list = [[t0, t1], [t0, tI], [tI, t1]]

            times = np.unique(ds[time_break])

            for t in times:
                time_ind = t == ds[time_break].data
                for var in sci_vars:
                    x = dict(data=ds['time'].data[time_ind],
                             info=dict(label='Time', units='GMT'))
                    t0 = pd.to_datetime(
                        x['data'].min()).strftime('%Y-%m-%dT%H%M%00')
                    t1 = pd.to_datetime(
                        x['data'].max()).strftime('%Y-%m-%dT%H%M%00')
                    try:
                        sci = ds[var]
                        print var
                        # sci = sub_ds[var]
                    except UnicodeEncodeError:  # some comments have latex characters
                        ds[var].attrs.pop(
                            'comment')  # remove from the attributes
                        sci = ds[var]  # or else the variable won't load

                    # define possible pressure variables
                    pressure_vars = [
                        'seawater_pressure', 'sci_water_pressure_dbar',
                        'ctdgv_m_glider_instrument_recovered-sci_water_pressure_dbar',
                        'ctdgv_m_glider_instrument-sci_water_pressure_dbar'
                    ]
                    rePressure = re.compile('|'.join(pressure_vars))

                    # define y as pressure variable
                    pressure = [
                        s for s in sci.variables if rePressure.search(s)
                    ]
                    pressure = ''.join(pressure)
                    y = sci.variables[pressure]
                    yN = pressure
                    y_units = sci.units

                    try:
                        y_lab = sci.long_name
                    except AttributeError:
                        y_lab = sci.standard_name
                    y = dict(data=sci.data[time_ind],
                             info=dict(label=y_lab,
                                       units=sci.units,
                                       var=var,
                                       platform=platform,
                                       node=node,
                                       sensor=sensor))

                    title = title_pre + var

                    # plot timeseries with outliers
                    fig, ax = pf.auto_plot(x,
                                           y,
                                           title,
                                           stdev=None,
                                           line_style='r-o',
                                           g_range=True)
                    pf.resize(width=12, height=8.5)  # Resize figure

                    save_name = '{}-{}-{}_{}_{}-{}'.format(
                        platform, node, sensor, var, t0, t1)
                    pf.save_fig(save_dir, save_name, res=150)  # Save figure
                    plt.close('all')

                    # plot z variable each time

                    fig, ax = pf.depth_cross_section(x,
                                                     y,
                                                     title,
                                                     stdev=1,
                                                     line_style='r-o',
                                                     g_range=True)

                    pf.resize(width=12, height=8.5)  # Resize figure

                    save_name = '{}-{}-{}_{}_{}-{}_outliers_removed'.format(
                        platform, node, sensor, var, t0, t1)
                    pf.save_fig(save_dir, save_name, res=150)  # Save figure
                    plt.close('all')

                del x, y
def main(files, out, time_break, depth, start, end, interactive):
    """
    files: url to an .nc/.ncml file or the path to a text file containing .nc/.ncml links. A # at the front will skip links in the text file.
    out: Directory to save plots
    """
    fname, ext = os.path.splitext(files)
    if ext in '.nc':
        list_files = [files]
    elif ext in '.ncml':
        list_files = [files]
    else:
        list_files = read_file(files)

    stream_vars = pf.load_variable_dict(
        var='eng')  # load engineering variables
    for nc in list_files:
        print nc
        with xr.open_dataset(nc, mask_and_scale=False) as ds:
            # change dimensions from 'obs' to 'time'
            ds = ds.swap_dims({'obs': 'time'})
            ds_variables = ds.data_vars.keys()  # List of dataset variables
            stream = ds.stream  # List stream name associated with the data
            title_pre = mk_str(ds.attrs, 't')  # , var, tt0, tt1, 't')
            save_pre = mk_str(ds.attrs, 's')  # , var, tt0, tt1, 's')
            platform = ds.subsite
            node = ds.node
            sensor = ds.sensor
            # save_dir = os.path.join(out,'xsection_depth_profiles')
            save_dir = os.path.join(
                out, ds.subsite, ds.subsite + '-' + ds.node + '-' + ds.sensor,
                ds.stream, 'xsection_depth_profiles')
            cf.create_dir(save_dir)

            misc = [
                'quality', 'string', 'timestamp', 'deployment', 'id',
                'provenance', 'qc', 'time', 'mission', 'obs', 'volt', 'ref',
                'sig', 'amp', 'rph', 'calphase', 'phase', 'therm', 'light'
            ]

            reg_ex = re.compile('|'.join(misc))

            #  keep variables that are not in the regular expression
            sci_vars = [s for s in ds_variables if not reg_ex.search(s)]

            if not time_break == None:
                times = np.unique(ds[time_break])

                for t in times:
                    time_ind = t == ds[time_break].data
                    for var in sci_vars:
                        x = dict(data=ds['time'].data[time_ind],
                                 info=dict(label='Time', units='GMT'))
                        t0 = pd.to_datetime(
                            x['data'].min()).strftime('%Y-%m-%dT%H%M%00')
                        t1 = pd.to_datetime(
                            x['data'].max()).strftime('%Y-%m-%dT%H%M%00')
                        try:
                            sci = ds[var]
                            print var
                            # sci = sub_ds[var]
                        except UnicodeEncodeError:  # some comments have latex characters
                            ds[var].attrs.pop(
                                'comment')  # remove from the attributes
                            sci = ds[var]  # or else the variable won't load

                        y = dict(data=ds[depth].data[time_ind],
                                 info=dict(label='Pressure',
                                           units='dbar',
                                           var=var,
                                           platform=platform,
                                           node=node,
                                           sensor=sensor))

                        try:
                            z_lab = sci.long_name
                        except AttributeError:
                            z_lab = sci.standard_name
                        z = dict(data=sci.data[time_ind],
                                 info=dict(label=z_lab,
                                           units=str(sci.units),
                                           var=var,
                                           platform=platform,
                                           node=node,
                                           sensor=sensor))

                        title = title_pre + var

                        # plot timeseries with outliers
                        fig, ax = pf.depth_glider_cross_section(x,
                                                                y,
                                                                z,
                                                                title=title)

                        if interactive == True:
                            fig.canvas.mpl_connect(
                                'pick_event', lambda event: pf.onpick3(
                                    event, x['data'], y['data'], z['data']))
                            plt.show()

                        else:
                            pf.resize(width=12, height=8.5)  # Resize figure
                            save_name = '{}-{}-{}_{}_{}-{}'.format(
                                platform, node, sensor, var, t0, t1)
                            pf.save_fig(save_dir, save_name,
                                        res=150)  # Save figure
                            plt.close('all')

            else:
                ds = ds.sel(time=slice(start, end))

                for var in sci_vars:
                    x = dict(data=ds['time'].data[:],
                             info=dict(label='Time', units='GMT'))
                    t0 = pd.to_datetime(
                        x['data'].min()).strftime('%Y-%m-%dT%H%M%00')
                    t1 = pd.to_datetime(
                        x['data'].max()).strftime('%Y-%m-%dT%H%M%00')
                    try:
                        sci = ds[var]
                        print var
                        # sci = sub_ds[var]
                    except UnicodeEncodeError:  # some comments have latex characters
                        ds[var].attrs.pop(
                            'comment')  # remove from the attributes
                        sci = ds[var]  # or else the variable won't load

                    y = dict(data=ds[depth].data[:],
                             info=dict(label='Pressure',
                                       units='dbar',
                                       var=var,
                                       platform=platform,
                                       node=node,
                                       sensor=sensor))

                    try:
                        z_lab = sci.long_name
                    except AttributeError:
                        z_lab = sci.standard_name
                    z = dict(data=sci.data[:],
                             info=dict(label=z_lab,
                                       units=sci.units,
                                       var=var,
                                       platform=platform,
                                       node=node,
                                       sensor=sensor))

                    title = title_pre + var

                    # plot timeseries with outliers
                    fig, ax = pf.depth_glider_cross_section(
                        x, y, z, title=title, interactive=interactive)

                    if interactive == True:
                        fig.canvas.mpl_connect(
                            'pick_event', lambda event: pf.onpick3(
                                event, x['data'], y['data'], z['data']))
                        plt.show()

                    else:
                        pf.resize(width=12, height=8.5)  # Resize figure
                        save_name = '{}-{}-{}_{}_{}-{}'.format(
                            platform, node, sensor, var, t0, t1)
                        pf.save_fig(save_dir, save_name,
                                    res=150)  # Save figure
                        plt.close('all')
def main(files, out, time_break, depth, start, end, interactive):
    """
    files: url to an .nc/.ncml file or the path to a text file containing .nc/.ncml links. A # at the front will skip links in the text file.
    out: Directory to save plots
    """
    fname, ext = os.path.splitext(files)
    if ext in '.nc':
        list_files = [files]
    elif ext in '.ncml':
        list_files = [files]
    else:
        list_files = read_file(files)

    stream_vars = pf.load_variable_dict(var='eng')  # load engineering variables
    for nc in list_files:
        print nc
        with xr.open_dataset(nc, mask_and_scale=False) as ds:
            # change dimensions from 'obs' to 'time'
            ds = ds.swap_dims({'obs': 'time'})
            ds_variables = ds.data_vars.keys()  # List of dataset variables
            stream = ds.stream  # List stream name associated with the data
            title_pre = mk_str(ds.attrs, 't')  # , var, tt0, tt1, 't')
            save_pre = mk_str(ds.attrs, 's')  # , var, tt0, tt1, 's')
            platform = ds.subsite
            node = ds.node
            sensor = ds.sensor
            # save_dir = os.path.join(out,'xsection_depth_profiles')
            save_dir = os.path.join(out, ds.subsite, ds.subsite + '-' + ds.node + '-' + ds.sensor, ds.stream, 'xsection_depth_profiles')
            cf.create_dir(save_dir)

            misc = ['quality', 'string', 'timestamp', 'deployment', 'id', 'provenance', 'qc',  'time', 'mission', 'obs',
            'volt', 'ref', 'sig', 'amp', 'rph', 'calphase', 'phase', 'therm', 'light']

            reg_ex = re.compile('|'.join(misc))

            #  keep variables that are not in the regular expression
            sci_vars = [s for s in ds_variables if not reg_ex.search(s)]

            if not time_break == None:
                times = np.unique(ds[time_break])
            
                for t in times:
                    time_ind = t == ds[time_break].data
                    for var in sci_vars:
                        x = dict(data=ds['time'].data[time_ind],
                                 info=dict(label='Time', units='GMT'))
                        t0 = pd.to_datetime(x['data'].min()).strftime('%Y-%m-%dT%H%M%00')
                        t1 = pd.to_datetime(x['data'].max()).strftime('%Y-%m-%dT%H%M%00')
                        try:
                            sci = ds[var]
                            print var
                            # sci = sub_ds[var]
                        except UnicodeEncodeError: # some comments have latex characters
                            ds[var].attrs.pop('comment')  # remove from the attributes
                            sci = ds[var]  # or else the variable won't load


                        y = dict(data=ds[depth].data[time_ind], info=dict(label='Pressure', units='dbar', var=var,
                                                                    platform=platform, node=node, sensor=sensor))

                        
                        try:
                            z_lab = sci.long_name
                        except AttributeError:
                            z_lab = sci.standard_name
                        z = dict(data=sci.data[time_ind], info=dict(label=z_lab, units=str(sci.units), var=var,
                                                                    platform=platform, node=node, sensor=sensor))

                        title = title_pre + var

                        # plot timeseries with outliers
                        fig, ax = pf.depth_glider_cross_section(x, y, z, title=title)

                        if interactive == True:
                            fig.canvas.mpl_connect('pick_event', lambda event: pf.onpick3(event, x['data'], y['data'], z['data']))
                            plt.show()

                        else:
                            pf.resize(width=12, height=8.5)  # Resize figure
                            save_name = '{}-{}-{}_{}_{}-{}'.format(platform, node, sensor, var, t0, t1)
                            pf.save_fig(save_dir, save_name, res=150)  # Save figure
                            plt.close('all')


            else:
                ds = ds.sel(time=slice(start, end))

                for var in sci_vars:
                    x = dict(data=ds['time'].data[:],
                             info=dict(label='Time', units='GMT'))
                    t0 = pd.to_datetime(x['data'].min()).strftime('%Y-%m-%dT%H%M%00')
                    t1 = pd.to_datetime(x['data'].max()).strftime('%Y-%m-%dT%H%M%00')
                    try:
                        sci = ds[var]
                        print var
                        # sci = sub_ds[var]
                    except UnicodeEncodeError: # some comments have latex characters
                        ds[var].attrs.pop('comment')  # remove from the attributes
                        sci = ds[var]  # or else the variable won't load


                    y = dict(data=ds[depth].data[:], info=dict(label='Pressure', units='dbar', var=var,
                                                                platform=platform, node=node, sensor=sensor))


                    try:
                        z_lab = sci.long_name
                    except AttributeError:
                        z_lab = sci.standard_name
                    z = dict(data=sci.data[:], info=dict(label=z_lab, units=sci.units, var=var,
                                                                platform=platform, node=node, sensor=sensor))

                    title = title_pre + var

                    # plot timeseries with outliers
                    fig, ax = pf.depth_glider_cross_section(x, y, z, title=title, interactive=interactive)

                    if interactive == True:
                        fig.canvas.mpl_connect('pick_event', lambda event: pf.onpick3(event, x['data'], y['data'], z['data']))
                        plt.show()

                    else:
                        pf.resize(width=12, height=8.5)  # Resize figure
                        save_name = '{}-{}-{}_{}_{}-{}'.format(platform, node, sensor, var, t0, t1)
                        pf.save_fig(save_dir, save_name, res=150)  # Save figure
                        plt.close('all')
def main(nc, directory, out, time_break, breakdown):
    """
    files: url to an .nc/.ncml file or the path to a text file containing .nc/.ncml links. A # at the front will skip links in the text file.
    out: Directory to save plots
    """
    list_files = directory + "/*.nc"
    # list_files = ['https://opendap.oceanobservatories.org/thredds/dodsC/ooi/friedrich-knuth-gmail/20170322T191659-RS03AXPS-PC03A-4A-CTDPFA303-streamed-ctdpf_optode_sample/deployment0003_RS03AXPS-PC03A-4A-CTDPFA303-streamed-ctdpf_optode_sample_20170312T000000.426102-20170322T190000.059973.nc',
    # 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/friedrich-knuth-gmail/20170322T191659-RS03AXPS-PC03A-4A-CTDPFA303-streamed-ctdpf_optode_sample/deployment0003_RS03AXPS-PC03A-4A-CTDPFA303-streamed-ctdpf_optode_sample_20161222T000000.132709-20170311T235959.426096.nc']
    # print list_files
    stream_vars = pf.load_variable_dict(var='eng')  # load engineering variables

    with xr.open_dataset(nc, mask_and_scale=False) as ds_ncfile:
        stream = ds_ncfile.stream  # List stream name associated with the data
        title_pre = mk_str(ds_ncfile.attrs, 't')  # , var, tt0, tt1, 't')
        save_pre = mk_str(ds_ncfile.attrs, 's')  # , var, tt0, tt1, 's')
        platform = ds_ncfile.subsite
        node = ds_ncfile.node
        sensor = ds_ncfile.sensor
        # save_dir = os.path.join(out, platform, node, stream, 'xsection_depth_profiles')
        save_dir = os.path.join(out,'timeseries',breakdown)
        cf.create_dir(save_dir)


    with xr.open_mfdataset(list_files) as ds:
        # change dimensions from 'obs' to 'time'
        ds = ds.swap_dims({'obs': 'time'})
        ds_variables = ds.data_vars.keys()  # List of dataset variables

        # try:
        #     eng = stream_vars[stream]  # select specific streams engineering variables
        # except KeyError:
        #     eng = ['']

        misc = ['quality', 'string', 'timestamp', 'deployment', 'id', 'provenance', 'qc',  'time', 'mission', 'obs',
        'volt', 'ref', 'sig', 'amp', 'rph', 'calphase', 'phase', 'therm']

        # reg_ex = re.compile('|'.join(eng+misc))  # make regular expression
        reg_ex = re.compile('|'.join(misc))

        #  keep variables that are not in the regular expression
        sci_vars = [s for s in ds_variables if not reg_ex.search(s)]

        # t0, t1 = pf.get_rounded_start_and_end_times(ds_disk['time'].data)
        # tI = (pd.to_datetime(t0) + (pd.to_datetime(t1) - pd.to_datetime(t0)) / 2)
        # time_list = [[t0, t1], [t0, tI], [tI, t1]]

        times = np.unique(ds[time_break])
        
        for t in times:
            time_ind = t == ds[time_break].data
            for var in sci_vars:
                x = dict(data=ds['time'].data[time_ind],
                         info=dict(label='Time', units='GMT'))
                t0 = pd.to_datetime(x['data'].min()).strftime('%Y-%m-%dT%H%M%00')
                t1 = pd.to_datetime(x['data'].max()).strftime('%Y-%m-%dT%H%M%00')
                try:
                    sci = ds[var]
                    print var
                    # sci = sub_ds[var]
                except UnicodeEncodeError: # some comments have latex characters
                    ds[var].attrs.pop('comment')  # remove from the attributes
                    sci = ds[var]  # or else the variable won't load

                try:
                    y_lab = sci.long_name
                except AttributeError:
                    y_lab = sci.standard_name
                y = dict(data=sci.data[time_ind], info=dict(label=y_lab, units=str(sci.units), var=var,
                                                            platform=platform, node=node, sensor=sensor))

                title = title_pre + var

                # plot timeseries with outliers
                fig, ax = pf.auto_plot(x, y, title, stdev=None, line_style='.', g_range=True)
                pf.resize(width=12, height=8.5)  # Resize figure

                save_name = '{}-{}-{}_{}_{}-{}'.format(platform, node, sensor, var, t0, t1)
                pf.save_fig(save_dir, save_name, res=150)  # Save figure
                plt.close('all')
                # try:
                #     y_lab = sci.standard_name
                # except AttributeError:
                #     y_lab = var
                # y = dict(data=sci.data, info=dict(label=y_lab, units=sci.units))

                # plot timeseries with outliers removed
                # fig, ax = pf.auto_plot(x, y, title, stdev=1, line_style='.', g_range=True)
                # pf.resize(width=12, height=8.5)  # Resize figure

                # save_name = '{}-{}-{}_{}_{}-{}_outliers_removed'.format(platform, node, sensor, var, t0, t1)
                # pf.save_fig(save_dir, save_name, res=150)  # Save figure
                # plt.close('all')
            del x, y
def main(nc, directory, out, time_break, breakdown):
    """
    files: url to an .nc/.ncml file or the path to a text file containing .nc/.ncml links. A # at the front will skip links in the text file.
    out: Directory to save plots
    """
    list_files = directory + "/*.nc"
    # list_files = ['https://opendap.oceanobservatories.org/thredds/dodsC/ooi/friedrich-knuth-gmail/20170322T191659-RS03AXPS-PC03A-4A-CTDPFA303-streamed-ctdpf_optode_sample/deployment0003_RS03AXPS-PC03A-4A-CTDPFA303-streamed-ctdpf_optode_sample_20170312T000000.426102-20170322T190000.059973.nc',
    # 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/friedrich-knuth-gmail/20170322T191659-RS03AXPS-PC03A-4A-CTDPFA303-streamed-ctdpf_optode_sample/deployment0003_RS03AXPS-PC03A-4A-CTDPFA303-streamed-ctdpf_optode_sample_20161222T000000.132709-20170311T235959.426096.nc']
    # print list_files
    stream_vars = pf.load_variable_dict(
        var='eng')  # load engineering variables

    with xr.open_dataset(nc, mask_and_scale=False) as ds_ncfile:
        stream = ds_ncfile.stream  # List stream name associated with the data
        title_pre = mk_str(ds_ncfile.attrs, 't')  # , var, tt0, tt1, 't')
        save_pre = mk_str(ds_ncfile.attrs, 's')  # , var, tt0, tt1, 's')
        platform = ds_ncfile.subsite
        node = ds_ncfile.node
        sensor = ds_ncfile.sensor
        # save_dir = os.path.join(out, platform, node, stream, 'xsection_depth_profiles')
        save_dir = os.path.join(out, 'timeseries', breakdown)
        cf.create_dir(save_dir)

    with xr.open_mfdataset(list_files) as ds:
        # change dimensions from 'obs' to 'time'
        ds = ds.swap_dims({'obs': 'time'})
        ds_variables = ds.data_vars.keys()  # List of dataset variables

        # try:
        #     eng = stream_vars[stream]  # select specific streams engineering variables
        # except KeyError:
        #     eng = ['']

        misc = [
            'quality', 'string', 'timestamp', 'deployment', 'id', 'provenance',
            'qc', 'time', 'mission', 'obs', 'volt', 'ref', 'sig', 'amp', 'rph',
            'calphase', 'phase', 'therm'
        ]

        # reg_ex = re.compile('|'.join(eng+misc))  # make regular expression
        reg_ex = re.compile('|'.join(misc))

        #  keep variables that are not in the regular expression
        sci_vars = [s for s in ds_variables if not reg_ex.search(s)]

        # t0, t1 = pf.get_rounded_start_and_end_times(ds_disk['time'].data)
        # tI = (pd.to_datetime(t0) + (pd.to_datetime(t1) - pd.to_datetime(t0)) / 2)
        # time_list = [[t0, t1], [t0, tI], [tI, t1]]

        times = np.unique(ds[time_break])

        for t in times:
            time_ind = t == ds[time_break].data
            for var in sci_vars:
                x = dict(data=ds['time'].data[time_ind],
                         info=dict(label='Time', units='GMT'))
                t0 = pd.to_datetime(
                    x['data'].min()).strftime('%Y-%m-%dT%H%M%00')
                t1 = pd.to_datetime(
                    x['data'].max()).strftime('%Y-%m-%dT%H%M%00')
                try:
                    sci = ds[var]
                    print var
                    # sci = sub_ds[var]
                except UnicodeEncodeError:  # some comments have latex characters
                    ds[var].attrs.pop('comment')  # remove from the attributes
                    sci = ds[var]  # or else the variable won't load

                try:
                    y_lab = sci.long_name
                except AttributeError:
                    y_lab = sci.standard_name
                y = dict(data=sci.data[time_ind],
                         info=dict(label=y_lab,
                                   units=str(sci.units),
                                   var=var,
                                   platform=platform,
                                   node=node,
                                   sensor=sensor))

                title = title_pre + var

                # plot timeseries with outliers
                fig, ax = pf.auto_plot(x,
                                       y,
                                       title,
                                       stdev=None,
                                       line_style='.',
                                       g_range=True)
                pf.resize(width=12, height=8.5)  # Resize figure

                save_name = '{}-{}-{}_{}_{}-{}'.format(platform, node, sensor,
                                                       var, t0, t1)
                pf.save_fig(save_dir, save_name, res=150)  # Save figure
                plt.close('all')
                # try:
                #     y_lab = sci.standard_name
                # except AttributeError:
                #     y_lab = var
                # y = dict(data=sci.data, info=dict(label=y_lab, units=sci.units))

                # plot timeseries with outliers removed
                # fig, ax = pf.auto_plot(x, y, title, stdev=1, line_style='.', g_range=True)
                # pf.resize(width=12, height=8.5)  # Resize figure

                # save_name = '{}-{}-{}_{}_{}-{}_outliers_removed'.format(platform, node, sensor, var, t0, t1)
                # pf.save_fig(save_dir, save_name, res=150)  # Save figure
                # plt.close('all')
            del x, y
Exemple #10
0
def main(files, out, east_var, north_var, up_var, err_var):
    """
    files: url to an .nc/.ncml file or the path to a text file containing .nc/.ncml links. A # at the front will skip links in the text file.
    out: Directory to save plots
    """
    fname, ext = os.path.splitext(files)
    if ext in '.nc':
        list_files = [files]
    elif ext in '.ncml':
        list_files = [files]
    else:
        list_files = read_file(files)

    stream_vars = pf.load_variable_dict(
        var='eng')  # load engineering variables
    # for nc in list_files:
    #     print nc

    # the engine that xarray uses can be changed as specified here
    # http://xarray.pydata.org/en/stable/generated/xarray.open_dataset.html#xarray.open_dataset
    for nc in list_files:
        print nc
        with xr.open_dataset(nc, mask_and_scale=False) as ds_disk:
            #with xr.open_mfdataset(nc, engine='netcdf4') as ds_disk:
            # change dimensions from 'obs' to 'time'
            ds_disk = ds_disk.swap_dims({'obs': 'time'})
            ds_variables = ds_disk.data_vars.keys(
            )  # List of dataset variables
            stream = ds_disk.stream  # List stream name associated with the data
            deployment = 'D0000{}'.format(
                str(numpy.unique(ds_disk.deployment)[0]))
            title_pre = mk_str(ds_disk.attrs, 't')  # , var, tt0, tt1, 't')
            save_pre = mk_str(ds_disk.attrs, 's')  # , var, tt0, tt1, 's')
            save_dir = os.path.join(out, ds_disk.subsite, deployment,
                                    ds_disk.node, ds_disk.stream, 'pcolor')
            cf.create_dir(save_dir)

            # t0, t1 = cf.get_rounded_start_and_end_times(ds_disk['time'].data)
            # tI = t0 + t1 - (t0 / 2)
            # time_list = [[t0, t1], [t0, tI], [tI, t1]]
            # time_list = [[t0, t1]]

            # for period in time_list:
            #     tt0 = period[0]
            #     tt1 = period[1]
            #     sub_ds = ds_disk.sel(time=slice(str(tt0), str(tt1)))

            north = ds_disk[north_var]
            east = ds_disk[east_var]
            up = ds_disk[up_var]
            error = ds_disk[err_var]

            try:
                bins = ds_disk['bin_depths']
                bins = dict(data=bins.data.T,
                            info=dict(label=bins.long_name, units=bins.units))
            except KeyError:
                # use the matrix indices to plot
                bins = numpy.zeros_like(east.data)
                for i, item in enumerate(east):
                    for jj, xtem in enumerate(east[i]):
                        bins[i][jj] = jj
                bins = numpy.reshape(bins, (bins.shape[-1], bins.shape[0]))
                bins = dict(data=bins, label='bin_indices', units='')

                # the correct way to do this is to calculate the bin_depths, for that you need:
                # 9 First Cell Range(meters) (rounded bin_1_distance average, m)
                # 73 deployment depth of the ADCP instrument (pull from asset-management, depth in m)
                # 21 number of bins (num_cells, m)
                # 4  cell length (cell_length, m)
                # equation with the numbers above would be:
                # depths = 73 - 9 - ([1:21]-1)*4;

            time = dict(data=ds_disk['time'].data,
                        info=dict(label=ds_disk['time'].standard_name,
                                  units='GMT'))
            #bins = dict(data=bins.data.T, info=dict(label=bins.long_name, units=bins.units))
            north = dict(data=north.data.T,
                         info=dict(label=north.long_name, units=north.units))
            east = dict(data=east.data.T,
                        info=dict(label=east.long_name, units=east.units))
            up = dict(data=up.data.T,
                      info=dict(label=up.long_name, units=up.units))
            error = dict(data=error.data.T,
                         info=dict(label=error.long_name, units=error.units))

            sname_ew = save_pre + 'E-W-ADCP'
            title = title_pre
            fig, axs = pf.adcp(time, bins, north, east, title)
            pf.resize(width=12, height=8.5)  # Resize figure
            pf.save_fig(save_dir, sname_ew, res=250)  # Save figure

            sname_ur = save_pre + 'U-R-ADCP'
            fig, axs = pf.adcp(time, bins, up, error, title)
            pf.resize(width=12, height=8.5)  # Resize figure
            pf.save_fig(save_dir, sname_ur, res=250)  # Save figure

            plt.close('all')
Exemple #11
0
def main(files, out, time_break):
    """
    files: url to an .nc/.ncml file or the path to a text file containing .nc/.ncml links. A # at the front will skip links in the text file.
    out: Directory to save plots
    """


    fname, ext = os.path.splitext(files)
    if ext in '.nc':
        list_files = [files]
    elif ext in '.ncml':
        list_files = [files]
    else:
        list_files = read_file(files)

    stream_vars = pf.load_variable_dict(var='eng')  # load engineering variables
    for nc in list_files:
        print nc
        with xr.open_dataset(nc, mask_and_scale=False) as ds:
            # change dimensions from 'obs' to 'time'
            ds = ds.swap_dims({'obs': 'time'})
            ds_variables = ds.data_vars.keys()  # List of dataset variables
            stream = ds.stream  # List stream name associated with the data
            title_pre = mk_str(ds.attrs, 't')  # , var, tt0, tt1, 't')
            save_pre = mk_str(ds.attrs, 's')  # , var, tt0, tt1, 's')
            platform = ds.subsite
            node = ds.node
            sensor = ds.sensor
            save_dir = os.path.join(out, ds.subsite, ds.node, ds.stream, 'timeseries')
            cf.create_dir(save_dir)
            try:
                eng = stream_vars[stream]  # select specific streams engineering variables
            except KeyError:
                eng = ['']

            misc = ['timestamp', 'provenance', 'qc', 'id', 'obs', 'deployment',
                    'volts', 'counts', 'quality_flag']

            reg_ex = re.compile('|'.join(eng+misc))  # make regular expression

            #  keep variables that are not in the regular expression
            sci_vars = [s for s in ds_variables if not reg_ex.search(s)]

            # t0, t1 = pf.get_rounded_start_and_end_times(ds_disk['time'].data)
            # tI = (pd.to_datetime(t0) + (pd.to_datetime(t1) - pd.to_datetime(t0)) / 2)
            # time_list = [[t0, t1], [t0, tI], [tI, t1]]

            times = np.unique(ds[time_break])

            for t in times:
                time_ind = t == ds[time_break].data
                for var in sci_vars:
                    x = dict(data=ds['time'].data[time_ind],
                             info=dict(label='Time', units='GMT'))
                    t0 = pd.to_datetime(x['data'].min()).strftime('%Y-%m-%dT%H%M%00')
                    t1 = pd.to_datetime(x['data'].max()).strftime('%Y-%m-%dT%H%M%00')
                    try:
                        sci = ds[var]
                        print var
                        # sci = sub_ds[var]
                    except UnicodeEncodeError: # some comments have latex characters
                        ds[var].attrs.pop('comment')  # remove from the attributes
                        sci = ds[var]  # or else the variable won't load
                    

                    # define possible pressure variables
                    pressure_vars = ['seawater_pressure', 'sci_water_pressure_dbar',
                                     'ctdgv_m_glider_instrument_recovered-sci_water_pressure_dbar',
                                     'ctdgv_m_glider_instrument-sci_water_pressure_dbar']
                    rePressure = re.compile('|'.join(pressure_vars))

                    # define y as pressure variable   
                    pressure = [s for s in sci.variables if rePressure.search(s)]
                    pressure = ''.join(pressure)
                    y = sci.variables[pressure]
                    yN = pressure
                    y_units = sci.units


                    




                    try:
                        y_lab = sci.long_name
                    except AttributeError:
                        y_lab = sci.standard_name
                    y = dict(data=sci.data[time_ind], info=dict(label=y_lab, units=sci.units, var=var,
                                                                platform=platform, node=node, sensor=sensor))





                    title = title_pre + var

                    # plot timeseries with outliers
                    fig, ax = pf.auto_plot(x, y, title, stdev=None, line_style='r-o', g_range=True)
                    pf.resize(width=12, height=8.5)  # Resize figure

                    save_name = '{}-{}-{}_{}_{}-{}'.format(platform, node, sensor, var, t0, t1)
                    pf.save_fig(save_dir, save_name, res=150)  # Save figure
                    plt.close('all')



                    # plot z variable each time



                    fig, ax = pf.depth_cross_section(x, y, title, stdev=1, line_style='r-o', g_range=True)


                    pf.resize(width=12, height=8.5)  # Resize figure

                    save_name = '{}-{}-{}_{}_{}-{}_outliers_removed'.format(platform, node, sensor, var, t0, t1)
                    pf.save_fig(save_dir, save_name, res=150)  # Save figure
                    plt.close('all')

                del x, y
Exemple #12
0
def main(files,
         out,
         start,
         end,
         time_break='full',
         stdev=None,
         color=None,
         interactive=False):
    """
    files: url to an .nc/.ncml file or the path to a text file containing .nc/.ncml links. A # at the front will skip links in the text file.
    out: Directory to save plots
    """
    fname, ext = os.path.splitext(files)
    if ext in '.nc':
        list_files = [files]
    elif ext in '.ncml':
        list_files = [files]
    else:
        list_files = read_file(files)

    stream_vars = pf.load_variable_dict(
        var='eng')  # load engineering variables
    for nc in list_files:
        print nc
        with xr.open_dataset(nc, mask_and_scale=False) as ds:
            # change dimensions from 'obs' to 'time'
            ds = ds.swap_dims({'obs': 'time'})
            ds_variables = ds.data_vars.keys()  # List of dataset variables
            title_pre = mk_str(ds.attrs, 't')  # , var, tt0, tt1, 't')
            platform = ds.subsite
            node = ds.node
            sensor = ds.sensor
            deployment = 'D0000{}'.format(str(np.unique(ds.deployment)[0]))
            stream = ds.stream
            save_dir = os.path.join(out, platform, deployment, node, sensor,
                                    stream, 'timeseries')
            cf.create_dir(save_dir)

            misc = [
                'quality', 'string', 'timestamp', 'deployment', 'id',
                'provenance', 'qc', 'time', 'mission', 'obs', 'volt', 'ref',
                'sig', 'amp', 'rph', 'calphase', 'phase', 'therm',
                'description'
            ]

            # reg_ex = re.compile('|'.join(eng+misc))  # make regular expression
            reg_ex = re.compile('|'.join(misc))

            #  keep variables that are not in the regular expression
            sci_vars = [s for s in ds_variables if not reg_ex.search(s)]

            # if not time_break is 'full' and not None:
            #     times = np.unique(ds[time_break])
            # else:
            #     times = [0]

            if not time_break == None:
                times = np.unique(ds[time_break])
                for t in times:
                    if not time_break is 'full':
                        time_ind = t == ds[time_break].data
                    else:
                        time_ind = np.ones(
                            ds['time'].data.shape,
                            dtype=bool)  # index all times to be set to True

                    for var in sci_vars:
                        x = dict(data=ds['time'].data[time_ind],
                                 info=dict(label='Time', units='GMT'))
                        t0 = pd.to_datetime(
                            x['data'].min()).strftime('%Y-%m-%dT%H%M%00')
                        t1 = pd.to_datetime(
                            x['data'].max()).strftime('%Y-%m-%dT%H%M%00')
                        try:
                            sci = ds[var]
                            print var
                        except UnicodeEncodeError:  # some comments have latex characters
                            ds[var].attrs.pop(
                                'comment')  # remove from the attributes
                            sci = ds[var]  # or else the variable won't load

                        try:
                            y_lab = sci.long_name
                        except AttributeError:
                            try:
                                y_lab = sci.standard_name
                            except AttributeError:
                                print 'attribute list is not complete. long_ and standard_ names are not available'
                                y_lab = var
                            try:
                                y_unit = str(sci.units)
                            except AttributeError:
                                print 'attribute list is not complete. missing units'
                                y_unit = 'missing'

                        y = dict(data=sci.data[time_ind],
                                 info=dict(label=y_lab,
                                           units=y_unit,
                                           var=var,
                                           platform=platform,
                                           node=node,
                                           sensor=sensor))

                        title = title_pre + var

                        # plot timeseries with outliers
                        fig, ax = pf.auto_plot(x,
                                               y,
                                               title,
                                               stdev=None,
                                               line_style='.',
                                               g_range=True,
                                               color=color)
                        pf.resize(width=12, height=8.5)  # Resize figure

                        save_name = '{}-{}-{}_{}_{}-{}'.format(
                            platform, node, sensor, var, t0, t1)
                        pf.save_fig(save_dir, save_name,
                                    res=150)  # Save figure
                        plt.close('all')

                        # plot timeseries with outliers removed
                        fig, ax = pf.auto_plot(x,
                                               y,
                                               title,
                                               stdev=stdev,
                                               line_style='.',
                                               g_range=True,
                                               color=color)
                        pf.resize(width=12, height=8.5)  # Resize figure

                        save_name = '{}-{}-{}_{}_{}-{}_outliers_removed'.format(
                            platform, node, sensor, var, t0, t1)
                        pf.save_fig(save_dir, save_name,
                                    res=150)  # Save figure
                        plt.close('all')
                    # del x, y

            else:
                ds = ds.sel(time=slice(start, end))
                for var in sci_vars:
                    x = dict(data=ds['time'].data[:],
                             info=dict(label='Time', units='GMT'))
                    t0 = pd.to_datetime(
                        x['data'].min()).strftime('%Y-%m-%dT%H%M%00')
                    t1 = pd.to_datetime(
                        x['data'].max()).strftime('%Y-%m-%dT%H%M%00')
                    try:
                        sci = ds[var]
                        print var
                    except UnicodeEncodeError:  # some comments have latex characters
                        ds[var].attrs.pop(
                            'comment')  # remove from the attributes
                        sci = ds[var]  # or else the variable won't load

                    try:
                        y_lab = sci.long_name
                    except AttributeError:
                        try:
                            y_lab = sci.standard_name
                        except AttributeError:
                            print 'attribute list is not complete. long_ and standard_ names are not available'
                            y_lab = var

                    try:
                        y_unit = sci.units
                    except AttributeError:
                        print 'attribute list is not complete. units are missing'
                        y_unit = 'missing'

                    y = dict(data=sci.data[:],
                             info=dict(label=y_lab,
                                       units=y_unit,
                                       var=var,
                                       platform=platform,
                                       node=node,
                                       sensor=sensor))

                    title = title_pre + var

                    # plot timeseries with outliers
                    fig, ax = pf.auto_plot(x,
                                           y,
                                           title,
                                           stdev=None,
                                           line_style='.',
                                           g_range=True,
                                           color=color)
                    pf.resize(width=12, height=8.5)  # Resize figure

                    save_name = '{}-{}-{}_{}_{}-{}'.format(
                        platform, node, sensor, var, t0, t1)
                    pf.save_fig(save_dir, save_name, res=150)  # Save figure
                    plt.close('all')

                    # plot timeseries with outliers removed
                    fig, ax = pf.auto_plot(x,
                                           y,
                                           title,
                                           stdev=stdev,
                                           line_style='.',
                                           g_range=True,
                                           color=color,
                                           interactive=interactive)
                    if interactive == True:
                        fig.canvas.mpl_connect(
                            'pick_event', lambda event: pf.onpick2(
                                event, x['data'], y['data']))
                        plt.show()

                    else:
                        pf.resize(width=12, height=8.5)  # Resize figure
                        save_name = '{}-{}-{}_{}_{}-{}_outliers_removed'.format(
                            platform, node, sensor, var, t0, t1)
                        pf.save_fig(save_dir, save_name,
                                    res=150)  # Save figure
                        plt.close('all')