valid_ce.append(test_lio_skel(use, test_model, batch, drop, tr.rng, epoch, tr.batch_size, x_, y_, loader, x_skeleton_)) # save best params # if valid_ce[-1][1] < 0.25: res_dir = save_results(train_ce, valid_ce, res_dir, params=params) if not tr.moved: res_dir = move_results(res_dir) if valid_ce[-1][1] < best_valid: save_params(params, res_dir, "best") save_params(params, res_dir) if valid_ce[-1][1] < best_valid: best_valid = valid_ce[-1][1] # epoch report epoch_report(epoch, best_valid, time()-time_start, learning_rate.get_value(borrow=True),\ train_ce[-1], valid_ce[-1], res_dir) # make_plot(train_ce, valid_ce) if lr.decay_each_epoch: learning_rate.set_value(float32(learning_rate.get_value(borrow=True)*lr.decay)) # elif lr.decay_if_plateau: # if epoch - lr_decay_epoch > tr.patience \ # and valid_ce[-1-tr.patience][1] <= valid_ce[-1][1]: # write("Learning rate decay: validation error stopped improving") # lr_decay_epoch = epoch # n_lr_decays +=1 # learning_rate.set_value(float32(learning_rate.get_value(borrow=True)*lr.decay_big)) # if epoch == 0: # learning_rate.set_value(float32(3e-4)) # else:
tr.batch_size, x_, y_, loader, x_skeleton_)) # save best params # if valid_ce[-1][1] < 0.25: res_dir = save_results(train_ce, valid_ce, res_dir, params=params) if not tr.moved: res_dir = move_results(res_dir) if valid_ce[-1][1] < best_valid: save_params(params, res_dir, "best") save_params(params, res_dir) if valid_ce[-1][1] < best_valid: best_valid = valid_ce[-1][1] # epoch report epoch_report(epoch, best_valid, time()-time_start, time()-prog_start_time, learning_rate.get_value(borrow=True),\ train_ce[-1], valid_ce[-1], res_dir) # make_plot(train_ce, valid_ce) if lr.decay_each_epoch: learning_rate.set_value( float32(learning_rate.get_value(borrow=True) * lr.decay)) # elif lr.decay_if_plateau: # if epoch - lr_decay_epoch > tr.patience \ # and valid_ce[-1-tr.patience][1] <= valid_ce[-1][1]: # write("Learning rate decay: validation error stopped improving") # lr_decay_epoch = epoch # n_lr_decays +=1 # learning_rate.set_value(float32(learning_rate.get_value(borrow=True)*lr.decay_big)) # if epoch == 0: # learning_rate.set_value(float32(3e-4))