print_params(params) #################################################################### #################################################################### print "\n%s\n\t epoch %d \n%s"%('-'*30, epoch, '-'*30) #################################################################### #################################################################### time_start = time() for i in range(loader.n_iter_train): #load data time_start_iter = time() loader.next_train_batch(x_, y_, x_skeleton_) tr.batch_size = y_.get_value(borrow=True).shape[0] ce.append(_batch(train_model, tr.batch_size, batch, True, apply_updates)) timing_report(i, time()-time_start_iter, tr.batch_size, res_dir) print "\t| "+ training_report(ce[-1]) + ", finish total of: 0." + str(i*1.0/loader.n_iter_train) # End of Epoch #################################################################### #################################################################### print "\n%s\n\t End of epoch %d, \n printing some debug info.\n%s" \ %('-'*30, epoch, '-'*30) #################################################################### #################################################################### # print insp_ train_ce.append(_avg(ce)) # validate valid_ce.append(test_lio_skel(use, test_model, batch, drop, tr.rng, epoch, tr.batch_size, x_, y_, loader, x_skeleton_)) # save best params # if valid_ce[-1][1] < 0.25: res_dir = save_results(train_ce, valid_ce, res_dir, params=params)
print "\n%s\n\t epoch %d \n%s" % ('-' * 30, epoch, '-' * 30) #################################################################### #################################################################### time_start = time() for i in range(loader.n_iter_train): #load data time_start_iter = time() loader.next_train_batch(x_, y_, x_skeleton_) print('tr.batch_size_before=%d' % tr.batch_size) tr.batch_size = y_.get_value(borrow=True).shape[0] print('tr.batch_size_after=%d' % tr.batch_size) ce.append( _batch(train_model, tr.batch_size, batch, True, apply_updates)[0]) print "the %d iteration,time used:%d" % (i, time() - time_start_iter) #timing_report(i, time()-time_start_iter, tr.batch_size, res_dir) print "\t| " + training_report(ce[-1]) + ", finish total of: 0." + str( i * 1.0 / loader.n_iter_train) # End of Epoch #################################################################### #################################################################### print "\n%s\n\t End of epoch %d, \n printing some debug info.\n%s" \ %('-'*30, epoch, '-'*30) #################################################################### #################################################################### # print insp_ train_ce.append(_avg(ce)) # validate valid_ce.append( test_lio_skel(use, test_model, batch, drop, tr.rng, epoch, tr.batch_size, x_, y_, loader, x_skeleton_))
out_std_train = [] print_params(net_convnet3d_grbm_early_fusion.params) #################################################################### print "\n%s\n\t epoch %d \n%s"%('-'*30, epoch, '-'*30) time_start = time() for i in range(loader.n_iter_train): #load data time_start_iter = time() loader.next_train_batch(x_, y_, x_skeleton_) ce_temp, out_mean_temp, out_std_temp = _batch(train_model, tr.batch_size, batch, True, apply_updates) ce.append(ce_temp) out_mean_train.append(out_mean_temp) out_std_train.append(out_std_temp) print "Training: No.%d iter of Total %d, %d s"% (i,loader.n_iter_train, time()-time_start_iter) \ + "\t| negative_log_likelihood "+ training_report(ce[-1]) # End of Epoch #################################################################### print "\n%s\n\t End of epoch %d, \n printing some debug info.\n%s" \ %('-'*30, epoch, '-'*30) train_ce.append(_avg(ce)) out_mean_all.append(_avg(out_mean_train)) out_std_all.append(_avg(out_std_train)) # validate valid_ce.append(test_lio_skel(use, test_model, batch, drop, tr.rng, epoch, tr.batch_size, x_, y_, loader, x_skeleton_)) # save best params res_dir = save_results(train_ce, valid_ce, res_dir, params=net_convnet3d_grbm_early_fusion.params, out_mean_train=out_mean_all,out_std_train=out_std_all) if not tr.moved: res_dir = move_results(res_dir)
#################################################################### time_start = time() print loader.n_iter_train for i in range(loader.n_iter_train): #load data time_start_iter = time() loader.next_train_batch(x_, y_, x_skeleton_) #tr.batch_size = y_.get_value(borrow=True).shape[0] ce_temp, out_mean_temp, out_std_temp = _batch(train_model, tr.batch_size, batch, True, apply_updates) #print out_mean_train, out_std_train ce.append(ce_temp) out_mean_train.append(out_mean_temp) out_std_train.append(out_std_temp) print "Training: No.%d iter of Total %d, %d s"% (i,loader.n_iter_train, time()-time_start_iter) \ + "\t| negative_log_likelihood "+ training_report(ce[-1]) # End of Epoch #################################################################### #################################################################### print "\n%s\n\t End of epoch %d, \n printing some debug info.\n%s" \ %('-'*30, epoch, '-'*30) #################################################################### #################################################################### print ce train_ce.append(_avg(ce)) out_mean_all.append(_avg(out_mean_train)) out_std_all.append(_avg(out_std_train)) # validate valid_ce.append(test_lio_skel(use, test_model, batch, drop, tr.rng, epoch, tr.batch_size, x_, y_, loader, x_skeleton_)) # save best params
#################################################################### print "\n%s\n\t epoch %d \n%s"%('-'*30, epoch, '-'*30) #################################################################### #################################################################### for i in range(loader.n_iter_train): time_start = time() #load # load_data(train_file, tr.rng, epoch, tr.batch_size, x_, y_) loader.next_train_batch(x_, y_) # print "loading time", time()-time_start # train tr.batch_size = y_.get_value(borrow=True).shape[0] ce.append(_batch(train_model, tr.batch_size, batch, True, apply_updates)) if epoch==0: timing_report(i, time()-time_start, tr.batch_size, res_dir) print "\t| "+ training_report(ce[-1]) # End of Epoch #------------------------------- #################################################################### #################################################################### print "\n%s\n\t End of epoch %d, \n printing some debug info.\n%s" \ %('-'*30, epoch, '-'*30) #################################################################### #################################################################### # print insp_ train_ce.append(_avg(ce)) # validate valid_ce.append(test_lio(file_info.valid, use, test_model, batch, drop, tr.rng, epoch, tr.batch_size, x_, y_,loader)) # save best params # if valid_ce[-1][1] < 0.25: