def main(): try: sheet_name = 'Index' df_temp1 = df_new.parse(sheet_name) df_temp2 = df_old.parse(sheet_name) df_temp1 = df_temp1[df_temp1['Index'] == 'Equity'] df_temp2 = df_temp2[df_temp2['Index'] == 'Equity'] sheet_names_new = df_temp1['Unnamed: 1'].tolist() sheet_names_old = df_temp2['Unnamed: 1'].tolist() writer = pd.ExcelWriter(output_file, mode='w') for name in sheet_names_new: if name in sheet_names_old: print(name) df1 = df_new.parse(name) df2 = df_old.parse(name) date1 = f.date_extract(df1) month_date1 = str(date1.month)+'_'+str(date1.day) logging.debug(" Month df1 : %s",month_date1) date2 = f.date_extract(df2) month_date2 = str(date2.month)+'_'+str(date2.day) logging.debug(" Month df2 : %s",month_date2) assert(date1.month - date2.month == 1) logging.debug("Assertion correct") dftmp1, qty1, mkt1, pnav1 = f.create_df(df1,month_date1) dftmp2, qty2, mkt2, pnav2 = f.create_df(df2,month_date2) logging.debug("new df created") dftmpx1 = dftmp1[dftmp1['INDUSTRY'].notna()] logger.debug("df1_shape : %s",dftmpx1.shape) dftmpx2 = dftmp2[dftmp2['INDUSTRY'].notna()] logger.debug("df2_shape : %s",dftmpx2.shape) dftmpx1 = dftmp1[dftmp1['ISIN Code'].notna()] print(dftmpx1.columns) dftmpx2 = dftmp2[dftmp2['ISIN Code'].notna()] #dftmpx1 = dftmp1[dftmp1[nav].notna()] #dftmpx2 = dftmp2[dftmp2[nav].notna()] dftmp = pd.merge(dftmpx1, dftmpx2, how = 'outer', on = ['Stock_Name', 'INDUSTRY', 'ISIN Code']) dftmp = dftmp.replace(np.nan, 0) dftmp['change'] = dftmp[[qty1, qty2]].apply(lambda x: f.find_change(x[0],x[1]), axis=1) dftmp['change_val'] = dftmp[[qty1, qty2]].apply(lambda x: f.find_act_change(x[0],x[1]), axis=1) dftmp.to_excel(writer, sheet_name=name) writer.save() except Exception: logger.debug("Unexpected Error")
import functions import numpy as np from language import max_letters, language_tags import pandas as pd import config word_data = [] language_data = [] master_dic = [] count = 0 #this function is used to generate dictionary for words in german and english language, and produces a final csv #which contains each word transformed into a vector and its label. for tag in config.language_tags.keys(): print('generating dictionary for ' + tag) dic = functions.create_df(tag, max_letters) for word in dic: master_dic.append(word) vct = functions.convert_dic_to_vector(dic, max_letters) for vector in vct: word_data.append(vector) output_vct = functions.create_output_vector(count, len(language_tags)) for i in range(len(vct)): language_data.append(output_vct) count += 1 arr = [] for i in range(len(word_data)): entry = [] entry.append(master_dic[i]) for digit in language_data[i]:
# Power point check pp_check = True while pp_check: input_pp = int(input("[3/3] Power points:")) req_pp = int(main_level.get(input_level).get("points")) - input_pp if req_pp < 0: print("Are you sure?") else: pp_check = False # Mapping the user input to return correct requirements req_pp = int(main_level.get(input_level).get("points")) - input_pp req_coin = main_level.get(input_level).get("coins") # Store the user input data into database db = create_df() if check_brawler(db, input_brawler): db = update_brawler(db, input_brawler, input_level, req_pp, req_coin) else: db = add_brawler(db, input_brawler, input_level, req_pp, req_coin) db = order_database(db) save_df(db) # Output stage to the user print("\n{}".format(db)) print("\nMake change to another Brawler?") make_change_input = input("[y/n]:")
import sys from functions import give_one, create_df from data_processing.data_proc import give_three from funs import give_two if __name__ == '__main__': df = create_df() df['one'] = give_one() df['two'] = give_two() df['three'] = give_three() if df.shape[1] == 4: print('Main run succesful') else: print('Error') sys.exit(1)
def test_create_df(): df = f.create_df() if df is not None: assert True else: assert False