def autocomplete_ingredients(food_item): results = [] # search = request.args.get('term') search = '%' + str(food_item) + '%' # print search query = """SELECT Food_Item.item_id FROM Food_Item WHERE Food_Item.name LIKE %s""" result = functions.get_result(query, [search]) if result is None: return [] all_ingr = [] for i in range(len(result)): ingr_list = functions.get_item_ingredients(result[i]["item_id"]) for ingredient in ingr_list: all_ingr.append(ingredient["name"]) all_ingr_names = list(set(all_ingr)) return json.dumps(all_ingr_names)
def test(): query = "SELECT Food_Item.name FROM Food_Item" results = functions.get_result(query, []) newResults = [] for r in results: newResults.append(str(r['name'])) return render_template('test.html', food_items=json.dumps(newResults))
def new_item(): if not session.get(user_id): flash(functions.get_flash_message("not_logged_in")) return redirect(url_for('login')) back_url = request.form['back_url'] query = "SELECT Food_Item.name FROM Food_Item" results = functions.get_result(query, []) new_results = [] for r in results: new_results.append(str(r['name'])) return render_template('newitem.html', food_items=json.dumps(new_results), back_url=back_url)
# 局所解とバイアスに分ける solutions, bias = functions.divide_solutions_bias(solutions_data) # 評価値の結果のリスト evaluations_result = [] for num_experiment in range(1, 101): print(num_experiment) # 対象のデータの読み込み data = functions.read_csv(read_filename) del data[0] data = functions.transform_to_float(data) # before_index = functions.get_result(data, functions.get_evaluations_list(data, solutions, bias), num_experiment, functions.get_best_solution_index(bias), solutions)[2] # 次の世代の作成 for num in range(num_execute): # print('-------') # print(functions.get_evaluation_value(data[before_index], solutions, bias)) data = next_generation_MGG_improve(data, solutions, bias, num_parents, num_children, num_elite_preservation, num_dimentions) # print(functions.get_result(data, functions.get_evaluations_list(data, solutions, bias), num_experiment, functions.get_best_solution_index(bias), solutions)) # before_index = functions.get_result(data, functions.get_evaluations_list(data, solutions, bias), num_experiment, functions.get_best_solution_index(bias), solutions)[2] # 新しい世代をcsvに書き込む functions.write_csv(write_filename + '_%i' % num_experiment, data) evaluations = functions.get_evaluations_list(data, solutions, bias) evaluation_vector = functions.get_result(data, evaluations, num_experiment, functions.get_best_solution_index(bias), solutions) evaluations_result.append(evaluation_vector) final_result = functions.get_final_result(evaluations_result) functions.write_result(result_file, evaluations_result, final_result)
# 局所解ファイルの読み込み solutions_data = functions.read_csv(solutions_file) del solutions_data[0] solutions_data = functions.transform_to_float(solutions_data) # 局所解とバイアスに分ける solutions, bias = functions.divide_solutions_bias(solutions_data) solutions = np.array(solutions) bias = np.array(bias) evaluations_result = [] for num_experiment in range(1, 101): print(num_experiment) random = make_random_matrix(5000, 100) # 評価値の結果のリスト evaluations = functions.get_evaluations_list(random, solutions, bias) rankings = functions.get_ranking_list(evaluations) matrix100, evaluations100, rankings100 = take_top_100( random, evaluations, rankings, solutions, bias) evaluation_vector = functions.get_result( matrix100, evaluations100, num_experiment, functions.get_best_solution_index(bias), solutions) evaluations_result.append(evaluation_vector) final_result = functions.get_final_result(evaluations_result) functions.write_result(result_file, evaluations_result, final_result)
soup = BeautifulSoup(source, 'lxml') #a better user agent so it doesn't timeout a = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36' config = Config() config.browser_user_agent = a #----------------------------------------------------------------------- page = 1 while page != explore + 1: print() print('Page {}...'.format(page)) print('-' * 80) soup = BeautifulSoup(requests.get(url, headers=headers).content, 'html.parser') search_div = soup.find_all(class_='rc') # find all divs that contains search result titles, links, descriptions = functions.get_result(search_div, titles, links, descriptions) next_link = soup.select_one('a:contains("Next")') if not next_link: break url = 'https://google.com' + next_link['href'] page += 1 #----------------------------------------------------------------------- writer.writer(titles,links,cont,config) #writes to file