input=activ_pool1, Kernels=Kernels_2, stride=stride_2, padding=0, non_linearialty='ReLu') activ_pool2 = functions.poollayer(input=out_a_pool2, type_pool='max', pool_size=pool_size_2) z_pool2 = functions.poollayer(input=out_z_pool2, type_pool='max', pool_size=pool_size_2) zs, logits = functions.mlp(input=np.ravel(activ_pool2), weights=weights, biases=biases, num_hidden=num_hidden, sizes=sizes, non_linearialty='sigmoid', output_size=output_size) logits[-1] = functions.softmax(zs[-1]) delta = backprop.cost_derivative( logits[-1], y_train) * backprop.softmax_grad(zs[-1]) der_beta = [] for i in range(sizes[0]): der_beta.append(delta * logits[-2][i]) der_beta = np.transpose(np.array(der_beta)) q = 0 for i in range(10):
print('KNN') k_values = [1, 2, 5, 7, 10] functions.knn(X_train, X_test, Y_train, Y_test, k_values, True, ['uniform', 'distance'], cfg.default.student_figures, 'knn') print('Decission Tree Regression') max_depths = [1, 10, 30, 50, 100, 300] min_weight_fraction_leafs = [.0, .125, .25, .375, .5] min_samples_leaf=[1, 10, 100, 200] functions.decision_tree(X_train, X_test, Y_train, Y_test, max_depths, min_weight_fraction_leafs, min_samples_leaf, cfg.default.student_figures, 'dtree') print('MLP') scaler = preprocessing.StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) max_iteration = 1000 solver = 'lbfgs' # lbfgs, adam, sgd alpha = [0.001, 0.0001, 0.00001] list_hidden_layer_sizes = [[10], [5, 2, 5], [60, 20]] functions.mlp(X_train_scaled, X_test_scaled, Y_train, Y_test, max_iteration, solver, alpha, list_hidden_layer_sizes, cfg.default.student_figures, 'mlp')
k_values = [1, 2, 5, 7, 10] functions.knn(X_train, X_test, y_train, y_test, k_values, True, ['uniform', 'distance'], cfg.default.real_estate_figures, 'knn') print('Decission Tree Regression') max_depths = [1, 10, 30, 50, 100, 300] min_weight_fraction_leafs = [.0, .125, .25, .375, .5] min_samples_leaf = [1, 10, 100, 200] functions.decision_tree(X_train, X_test, y_train, y_test, max_depths, min_weight_fraction_leafs, min_samples_leaf, cfg.default.real_estate_figures, 'dtree') print('MLP') scaler = preprocessing.StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) max_iteration = 1000 solver = 'lbfgs' # lbfgs, adam, sgd alpha = [0.001, 0.0001, 0.00001] list_hidden_layer_sizes = [[10], [5, 2, 5], [60, 20]] functions.mlp(X_train_scaled, X_test_scaled, y_train, y_test, max_iteration, solver, alpha, list_hidden_layer_sizes, cfg.default.real_estate_figures, 'mlp')