Exemple #1
0
def eigenSpace(matrix):
    sampleIndex = np.hstack(
        (np.arange(0, 50), np.arange(250, 300), np.arange(700, 750)))
    sam_matrix = matrix[sampleIndex, :]
    ##    sam=np.zeros((3,50,30))
    ##    sam[0]=matrix[0:50:1,:]
    ##    sam[1]=matrix[250:300:1,:]
    ##    sam[2]=matrix[700:750:1,:]
    eva, eve = functions.pca(sam_matrix)
    indsort = np.argsort(-eva)
    indeve = np.array([0, 1, 2])
    eveSelect = eve[:, indsort[indeve]]
    nmat = np.dot(sam_matrix, eveSelect)
    #pHist(nmat[50:100:1,2])
    pEigenSpace_3d((nmat[0:50:1, :], nmat[50:100:1, :], nmat[100:150:1, :]),
                   indeve + 1)
    pEigenSpace_1((nmat[0:50:1, :], nmat[50:100:1, :], nmat[100:150:1, :]),
                  indeve + 1)
Exemple #2
0
            #we don't care for the appearances of
            mapping[id] = 'dc'
    all_features[column] = all_features[column].map(mapping)


personal_data_encoding('bin', 3)
personal_data_encoding('card_id', 10)

encoded_feat = pd.get_dummies(all_features)

#after the encoding too many columns are created
#we use pca to reduce the features and identify the most discriminative ones
#we have the best results for 500 components however it takes a lot of time
#thus we have 100 for the script
comp = 100
test_feature = functions.pca(encoded_feat, enc_label, comp)
test_ff = pd.DataFrame(test_feature)

rf = RandomForestClassifier()
tp, fp, tn, fn, true_labels, probs = functions.cross_validation(
    rf, test_ff, enc_label, 10, 0.5)
print('Random Forest True Positives %s' % sum(tp))
print('Random Forest False Positives %s' % sum(fp))

fScore, precision, recall = functions.metrics(tp, fp, tn, fn)

print('Random Forest Fscore %s' % fScore)
print('Random Forest Precision %s' % precision)
print('Random Forest Recall %s' % recall)

#ROC Curve
Exemple #3
0
                    n1, n2, n3, n4, n5])

plt.style.use('dark_background')
fig = plt.figure(figsize=(3,5))
for i in range(len(gray_arr)):
    plt.subplot(3, 5, i+1)
    plt.title(i)
    plt.imshow(gray_arr[i], cmap='gray', vmin=0, vmax=255)
    plt.xticks([])
    plt.yticks([])
plt.show()

""" Training """
y = []
for i in gray_arr:
    y.append(pca(i)[7])

""" Test Images """
# Dragon Queen Test
dqt = grayscale_image('images/Dragon Queen Test.jpg')
ydq = pca(dqt)[7]

# Missandei test
mit = grayscale_image('images/Missandei Test.jpg')
ymi = pca(mit)[7]

# Nichole test
nt = grayscale_image('images/Nichole Test.jpg')
yn = pca(nt)[7]

# Group images
Exemple #4
0
et = np.zeros((19, 1))
etr = np.zeros((19, 1))
acc = np.zeros((19, 1))
e1 = np.zeros((19, 1))
er1 = np.zeros((19, 1))
et1 = np.zeros((19, 1))
etr1 = np.zeros((19, 1))
acc1 = np.zeros((19, 1))

count = 0
for i in range(10, 200, 10):
    print(i)
    e[count], er[count], et[count], etr[count], acc[count] = fn.pca(
        d.trainvector,
        d.trainlabels,
        d.testvector,
        d.testlabels,
        nc=i,
        clf='Knn')
    e1[count], er1[count], et1[count], etr1[count], acc1[count] = fn.pca(
        d.trainvector,
        d.trainlabels,
        d.testvector,
        d.testlabels,
        nc=i,
        clf='NB')

    count += 1

print(
    etr1.ravel(),