Exemple #1
0
for index, learning_decay in enumerate(learning_decays):
    (c1, c2) = color_couples[index]

    # prepare the scores array (y-axis)
    d = dict_learningDecay[str(learning_decay) + '_learning_decay']
    train_scores = np.array(d['train_scores'])
    test_scores = np.array(d['test_scores'])
    train_perplexities = np.array(d['train_perplexities'])
    test_perplexities = np.array(d['test_perplexities'])

    alpha = 0.1
    label = 'learning_decay ' + str(learning_decay)
    plot_scores(ax_1,
                x_axis,
                train_scores,
                n_splits,
                c1,
                title='train_scores',
                label=label)
    plot_scores(ax_2,
                x_axis,
                train_perplexities,
                n_splits,
                c1,
                title='train_perplexities',
                label=label)
    plot_scores(ax_3,
                x_axis,
                test_scores,
                n_splits,
                c2,
color_couples = [('#99c9eb', '#f998a5'), ('#4ca1dd', '#f77687'),
                 ('#0079cf', '#f6546a'),
                 ('#005490', '#c44354'), ('#003052', '#93323f'), ]
x_axis = range(0, max_iter, valid_iter)

plt.figure(figsize=(20, 16))
plt.suptitle('Tuning n_topic (learning decay = '+str(learning_decay)+')', fontsize=12)
ax_1 = plt.subplot(221)
ax_2 = plt.subplot(222)
ax_3 = plt.subplot(223)
ax_4 = plt.subplot(224)

for index, n_component in enumerate(n_components):
    (c1, c2) = color_couples[index]

    d = dict_num_topic[str(n_component) + '_topics']
    train_scores = np.array(d['train_scores'])
    test_scores = np.array(d['test_scores'])
    train_perplexities = np.array(d['train_perplexities'])
    test_perplexities = np.array(d['test_perplexities'])

    alpha = 0.1
    label = 'topic_'+str(n_component)
    plot_scores(ax_1, x_axis, train_scores, n_splits, c1, title='train_scores', label=label)
    plot_scores(ax_2, x_axis, train_perplexities, n_splits, c1, title='train_perplexities', label=label)
    plot_scores(ax_3, x_axis, test_scores, n_splits, c2, title='test_scores', label=label)
    plot_scores(ax_4, x_axis, test_perplexities, n_splits, c2, title='test_perplexities', label=label)

    plt.savefig('converge_exploration_nTopic(learning decay'+str(learning_decay)+'_full.png')

    print "\nFinish Plotting within", time() - start_time, 'secends'