def clean_exit(reason=None): print('Exiting gracefully (reason: {0})'.format(reason), file=sys.stderr) # revert all changes to iptables helpers.run( 'iptables-save | grep -v "searchExamServer" | iptables-restore -w') helpers.run( 'iptables-legacy-save | grep -v "searchExamServer" | iptables-legacy-restore -w' ) # if isDeb9OrNewer(): # url_whitelist = helpers.run('diff --unchanged-group-format="" <(echo "^{p}://{h}" | sed "s/\./\\\./g") {f}'.format(f = urlWhitelistFile, p = gladosProto, h = gladosHost)) # else: # url_whitelist = helpers.run('diff --unchanged-group-format="" <(echo "^{p}://{h}") {f}'.format(f = urlWhitelistFile, p = gladosProto, h = gladosHost)) helpers.run('umount /run/initramfs/newroot 2>/dev/null') helpers.run('umount -l /run/initramfs/{base,exam} 2>/dev/null') if isDeb9OrNewer(): helpers.run('squid -k reconfigure') # iptables stays exit(0)
def compute(tpl): """Takes a combination of gamma and nu value and trains and evaluates a OC-SVM using the current feature set""" g = tpl[0] n = tpl[1] ocsvm = svm.OneClassSVM(nu=n, kernel="rbf", gamma=g, cache_size=1000) errorRate = func.calcErrorRate(func.run(ocsvm, config["folds"], trS, teS)) tmpResults[errorRate] = (g, n, lookUp[subsetCnt]) print str(format(errorRate[0], '.20f')) + " " + str( format(errorRate[1], '.20f')) + " : gamma= " + str(g) + " nu= " + str( n) + " features= " + str(lookUp[subsetCnt])
else: util.cli = "riff" if args.push_secret is None or len(args.push_secret) <= 0: util.push_secret = "" else: if args.image_prefix is None or len(args.image_prefix) <= 0: raise Exception("An --image-prefix must be provided when using --push-secret") util.push_secret = args.push_secret util.image_prefix = args.image_prefix if args.pull_secret is None or len(args.pull_secret) <= 0: util.pull_secret = "" else: util.pull_secret = args.pull_secret if args.manifest is None or len(args.manifest) <= 0: if args.pfs: raise Exception("A manifest must be provided for PFS") util.manifest = "stable" else: util.manifest = args.manifest import setup, teardown, functions, eventing setup.run() functions.run() eventing.run() teardown.run() elapsed_time = time.time() - start_time elapsed_min = int(elapsed_time / 60) elapsed_sec = int(elapsed_time - (elapsed_min * 60)) print("DONE in {m} min {s} sec".format(m=elapsed_min, s=elapsed_sec))
] skplt.estimators.plot_feature_importances(extra_clf, max_num_features=5) selected_x_set = selected_x.transform(X_data) selected_x_set_new = selected_x.transform(data_new) selected_x_set_old = selected_x.transform(data_oldies) # %% models_old_sig = {} models_new_sig = {} models_whole_sig = {} models_whole = {} models_old_s = {} models_new_s = {} models_whole_s = {} models_old_sig = func.run(data_oldies_sig, y_old) models_new_sig = func.run(data_new_sig, y_new) models_whole_sig = func.run(X_data_sig, y_sig) models_whole = func.run(X_data, y) models_old_s = func.run(selected_x_set_old, y_old) models_new_s = func.run(selected_x_set_new, y_new) models_whole_s = func.run(selected_x_set, y) test = func.run_ann(X_data, y) models_old_sig["ann_basic"] = func.run_ann(data_oldies_sig, y_old) models_new_sig["ann_basic"] = func.run_ann(data_new_sig, y_new) models_whole_sig["ann_basic"] = func.run_ann(X_data_sig, y_sig) models_whole["ann_basic"] = func.run_ann(X_data, y) models_old_s["ann_basic"] = func.run_ann(selected_x_set_old, y_old) models_new_s["ann_basic"] = func.run_ann(selected_x_set_new, y_new)
from classes import Pause from functions import get_driver, run from sys import exit if __name__ == '__main__': sleep_duration = Pause() counter = 0 omegle = "https://www.omegle.com/" print(f"[*] Navigating to {omegle}") while True: driver = get_driver(omegle) driver = run(driver, sleep_duration) driver.get_screenshot_as_file(f'./screen_shots/run_{counter}.png') print(f"[*] Iteration {counter} complete | Image: run_{counter}.png") counter += 1 driver.quit() sleep_duration.reset()
from functions import run semestre = '2021-1' ramos = [ # Pregrado # {'nrc': 15218, 'sigla': 'ICS3313', 'sec': 3}, # {'nrc': 10207, 'sigla': 'IHI2315', 'sec': 1}, # {'nrc': 10725, 'sigla': 'IIC2133', 'sec': 1}, {'nrc': 10732, 'sigla': 'IIC2143', 'sec': 1}, # Práctica II # {'nrc': 24183, 'sigla': 'ING2005', 'sec': 1}, # {'nrc': 11844, 'sigla': 'ING2001', 'sec': 1}, # Magíster {'nrc': 18871, 'sigla': 'IIC3697', 'sec': 1}, {'nrc': 10930, 'sigla': 'IIC3724', 'sec': 1}, {'nrc': 11856, 'sigla': 'ING4921', 'sec': 1}, ] if __name__ == '__main__': run(semestre, ramos, interval=60)
#! /usr/bin/python3 from functions import run run()
import argparse import importlib import os import sys from functions import create_exp_name_and_datetime_path, merge_cfg_with_cli, run from human_id import generate_id if __name__ == "__main__": # parser = argparse.ArgumentParser() exp = sys.argv[1].split("/")[-1].split(".")[0] module = importlib.import_module("." + exp, package="experiments") Experiment = getattr(module, "Experiment") cfg = getattr(module, "Config") parser = merge_cfg_with_cli(cfg) parser.add_argument("exp") args = parser.parse_args() path = create_exp_name_and_datetime_path(Experiment) path = os.path.join("results", path) args.run_id = generate_id() run(Experiment, args, path)
import functions as hard hard.run()
def compute(tpl): global counter global threshold g = tpl[0] n = tpl[1] counter = counter + 1 ocsvm = svm.OneClassSVM(nu=n, kernel="rbf", gamma=g, cache_size=1000) errorRate = func.calcErrorRate(func.run(ocsvm, config["folds"], trS, teS)) tmpResults[errorRate] = (g, n, lookUp[subsetCnt]) print str(format(errorRate[0], '.20f')) + " " + str(format(errorRate[1], '.20f')) + " : gamma= " + str(g) + " nu= " + str(n) + " features= " + str(lookUp[subsetCnt]) if counter == rejected: threshold = findBestErrorRate(results) t = open('data/results/stopping-rule/result-' + str(config["folds"]) + '.txt', 'a+') sys.stdout = t print "Results for feature subset / model parameters for " + str(config["folds"]) + "-folded CV with " + str( len(gammaVal)) + \ " gamma values and " + str(len(nuVal)) + " nu values:\n" print "Stopping rule threshold:" print "gamma :" + str(threshold[1][0]) print "nu :" + str(threshold[1][1]) print "feature subset :" + str(threshold[1][2]) print "threshold : %s%% false alarm rate, %s%% miss rate" % ( str(threshold[0][0] * 100), str(threshold[0][1] * 100)) + "\n" sys.stdout = temp t.close() elif counter > rejected: t = open('data/results/stopping-rule/result-' + str(config["folds"]) + '.txt', 'a+') sys.stdout = t if (threshold[0][0] > errorRate[0]) or (threshold[0][0] == errorRate[0] and threshold[0][1] > errorRate[1]): print "Best result found:" print "gamma :" + str(g) print "nu :" + str(n) print "feature subset :" + str(lookUp[subsetCnt]) print "grid search results : %s%% false alarm rate, %s%% miss rate" % ( str(errorRate[0] * 100), str(errorRate[1] * 100)) print "\n" print "Started on " + started.strftime("%Y-%m-%d %H:%M") print "Finished on " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M") print "Execution time " + str(datetime.datetime.now() - started) print "------------------------------------------------------------" temp.write("\n" + "Started on " + started.strftime("%Y-%m-%d %H:%M") + "\n") temp.write("Finished on " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M") + "\n") temp.write("------------------------------------------------------------\n") sys.exit("Stopping rule") elif counter == candidates: print "Best result found (not better than the threshold):" print "gamma :" + str(g) print "nu :" + str(n) print "feature subset :" + str(lookUp[subsetCnt]) print "grid search results : %s%% false alarm rate, %s%% miss rate" % ( str(errorRate[0] * 100), str(errorRate[1] * 100)) print "\n" print "Started on " + started.strftime("%Y-%m-%d %H:%M") print "Finished on " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M") print "Execution time " + str(datetime.datetime.now() - started) print "------------------------------------------------------------" sys.stdout = temp t.close()
pool.apply_async(run.run, args=(days, horizon, SoC, NL, b, num_samples, taus, inpEndo, inpExo, tar, lambdas, perfectFC)) for b in bo ] my_res = [p.get() for p in my_res] pool.close() print("--- %s seconds ---" % (time.time() - start_time)) # Run just one process during testing #taus = np.arange(0.1,0.91,0.1) #fn.run(days,horizon,SoC,NL,False,num_samples,taus,inpEndo,inpExo,tar,lambdas,perfectFC) # Run the uncontrolled charging #fn.uncontrolledCharging(perfectFC,SoC,lambdas) ''' # RUNNING DETERMINISTIC WITH PERFECT FORECASTS # NOTE THAT THE FUNCTION RUN SHOULD BE MANUALLY ADJUSTED FOR THIS SPECIAL CASE #num_samples = 1 taus = np.arange(0.1,0.91,0.1) fn.run(days,horizon,SoC,NL,False,num_samples,taus,inpEndo,inpExo,tar,lambdas,perfectFC) ''' ''' # Train the GBRT models # Use the same hyperparameters for all forecast horizons. all_files = glob.glob(os.path.join("CrossValidation", "*.txt")) params = pd.concat((pd.read_csv(f, sep="\t") for f in all_files), ignore_index=True).sort_values(by=['CRPS']).iloc[0,0:6] if __name__ == '__main__': pool = mp.Pool(processes=64) horizon = np.arange(1,97,1) my_res = [pool.apply_async(fc_fn.gbrt_training, args=(h,inpEndo,inpExo,tar,params)) for h in horizon]
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.bind(('localhost', 18493)) except OSError: print('Program is already running, exitting.', file=sys.stderr) sys.exit(1) signal.signal(signal.SIGINT, trap) signal.signal(signal.SIGTERM, trap) # import time # time.sleep(10) # allow bonjour/zeroconf helpers.run( 'iptables -I INPUT -p udp --dport 5353 -d 224.0.0.251 -m comment --comment "searchExamServer" -j ACCEPT' ) helpers.run( 'iptables -I OUTPUT -p udp --dport 5353 -d 224.0.0.251 -m comment --comment "searchExamServer" -j ACCEPT' ) display = helpers.get_env("DISPLAY") xauthority = helpers.get_env("XAUTHORITY") env = { 'DISPLAY': display, 'XAUTHORITY': xauthority, 'LANG': helpers.get_env('LANG') } # create the directory structure and cleanup for path in [