def build(self, variable, ftp): """Build initial dataset.""" # We need to build these three files paths = self.get_paths(variable) # Retrieve rasters self.get_rasters(variable, ftp) # Reproject for area calculations for file in glob(os.path.join(self.tif_folder, "*tif")): self.reproject(file) # Convert originals to NetCDF file files = glob(os.path.join(self.tif_folder, variable + "*tif")) toNetCDF(tfiles=files, ncfiles=None, savepath=paths["original"], index=variable, proj=4326, year1=1895, month1=1, year2=TODAYS_DATE.year - 2, month2=12, wmode="w", percentiles=False) # Convert projected files to NetCDF file files = glob(os.path.join(self.tif_folder, "proj_*tif")) toNetCDFAlbers(tfiles=files, ncfiles=None, savepath=paths["albers"], index=variable, proj=PROJ, year1=1895, month1=1, year2=TODAYS_DATE.year - 2, month2=12, wmode="w", percentiles=False) # Create a percentile dataset toNetCDFPercentile(paths["original"], paths["percentile"]) # Clear temp folder self._clear_tif()
del ds # Now, run toNetCDF using the file name dates. tfiles = glob(os.path.join(temp_folder, 'temp_*')) tfiles_proj = glob(os.path.join(temp_folder, 'proj_*')) nc_path = os.path.join(data_path, "data/droughtindices/netcdfs/", index + ".nc") nc_path_proj = os.path.join(data_path, "data/droughtindices/netcdfs/albers", index + ".nc") toNetCDF(tfiles=tfiles, ncfiles=None, savepath=nc_path, index=index, proj=4326, year1=1980, month1=1, year2=todays_date.year, month2=12, wmode='w', percentiles=False) toNetCDFAlbers(tfiles=tfiles_proj, ncfiles=None, savepath=nc_path_proj, index=index, proj=proj, year1=1980, month1=1, year2=todays_date.year, month2=12, wmode='w',
ncfiles = glob(os.path.join(local_path, 'temp_*[0-9]*.nc')) # This is the target file - wwdt acronyms differ nc_path = os.path.join(data_path, 'data/droughtindices/netcdfs/', index_map[index] + '.nc') nc_path_proj = os.path.join(data_path, 'data/droughtindices/netcdfs/albers', index_map[index] + '.nc') # This function smooshes everything into one netcdf file toNetCDF(tfiles, ncfiles, nc_path, index, proj=4326, year1=1895, month1=1, year2=todays_date.year, month2=todays_date.month, wmode='w', percentiles=False) # We are also including percentiles, so lets build another dataset pc_path = os.path.join(data_path, 'data/droughtindices/netcdfs/percentiles', index_map[index] + '.nc') print("Calculating Percentiles...") toNetCDFPercentile(nc_path, pc_path) # Now create the alber's netcdf toNetCDFAlbers(tfiles_proj,
in_path = f out_path = os.path.join(tif_folder, 'proj_' + filename) ds = gdal.Warp(out_path, in_path, dstSRS=proj) ds = None # Now create the three netcdf files tfiles = glob(os.path.join(tif_folder, variable + '*')) tfiles_proj = glob(os.path.join(tif_folder, 'proj_*')) # Original toNetCDF(tfiles=tfiles, ncfiles=None, savepath=original_path, index=variable, proj=4326, year1=1895, month1=1, year2=todays_date.year, month2=12, wmode='w', percentiles=False) toNetCDFAlbers(tfiles=tfiles_proj, ncfiles=None, savepath=albers_path, index=variable, proj=proj, year1=1895, month1=1, year2=todays_date.year, month2=12, wmode='w',