def test_optimized_plated_einsum_adjoint(equation, plates, backend): inputs, outputs, sizes, operands, funsor_operands = make_einsum_example( equation) with interpretation(reflect): fwd_expr = einsum(equation, *funsor_operands, plates=plates, backend=backend) actuals = adjoint(fwd_expr, funsor_operands) for operand in operands: pyro_require_backward(operand) expected_out = pyro_einsum(equation, *operands, modulo_total=False, plates=plates, backend=backend)[0] expected_out._pyro_backward() for i, (inp, tv, fv) in enumerate(zip(inputs, operands, funsor_operands)): actual = actuals[fv] expected = tv._pyro_backward_result if inp: actual = actual.align(tuple(inp)) assert isinstance(actual, funsor.Tensor) assert expected.shape == actual.data.shape assert torch.allclose(expected, actual.data, atol=1e-7)
def test_optimized_plated_einsum(equation, plates, backend): inputs, outputs, sizes, operands, funsor_operands = make_einsum_example( equation) expected = pyro_einsum.einsum(equation, *operands, plates=plates, backend=backend)[0] actual = einsum(equation, *funsor_operands, plates=plates, backend=backend) if len(equation) < 10: actual_naive = naive_plated_einsum(equation, *funsor_operands, plates=plates, backend=backend) assert_close(actual, actual_naive) assert isinstance(actual, funsor.Tensor) and len(outputs) == 1 if len(outputs[0]) > 0: actual = actual.align(tuple(outputs[0])) assert expected.shape == actual.data.shape assert torch.allclose(expected, actual.data) for output in outputs: for i, output_dim in enumerate(output): assert output_dim in actual.inputs assert actual.inputs[output_dim].dtype == sizes[output_dim]