def main(): args = parser.parse_args() datas = [] for i in args.file: data = fuse.ListWindows() data.load(i, False, verbose = args.verbose) datas.append(data) data1 = datas[0] data2 = datas[1] compare(data1, data2, args)
def process_files(args): outfile = open(args.output, 'w') used_names = {} current_file = 0 if len(args.metadata) != len(args.file): # Not of the same length: ignore metadata args.metadata = ['' for i in range(len(args.file))] for vidjil in args.file: try: data = fuse.ListWindows() data.load(vidjil, "") except Exception: print "** Warning ** file %s could not be loaded" % vidjil else: write_fuse_to_fasta(data, outfile, used_names, vidjil, args, args.metadata[current_file]) current_file += 1 outfile.close()
def main(): print('%%%%', ' '.join(sys.argv)) args = parser.parse_args() for i in args.file: data = fuse.ListWindows() data.load(i, False, verbose=args.verbose) if data.d['samples'].d['number'] < args.sample + 1: print("! no sample %d in %s'" % (args.sample, i)) continue sample = args.sample m = regex_filename.match(i) i_short = m.group(1) if m else i if args.analysis: # TODO: hardcoded for output of links.py # should be more flexible ii = 'data.vidjil/' + 'pat-' + i_short + '.analysis' data_analysis = analysis.Analysis(data) data_analysis.load(ii) data_analysis.cluster_stats() if str(data_analysis.d['samples']['run_timestamp']) == str( data.d['samples'].d['run_timestamp']): print("%% timestamps: OK") else: print("%% timestamps: XXX", i, data.d['samples'].d['run_timestamp'], "instead of", data_analysis.d['samples']['run_timestamp']) else: data_analysis = None print('%s %% %s' % (i_short, i)) print('%% ', data.d["reads"]) segmented_reads = data.d['reads'].d['segmented'][sample] out = [] for w in data: if data_analysis: tag = data_analysis.tag_of_clone(w) if not tag: continue else: tag = '' reads = w.d['reads'][sample] ratio = float(reads) / segmented_reads if reads >= args.min and ratio >= args.min_ratio: out += [(-reads, w, tag)] for bla, w, tag in sorted(out[:args.top]): segmented_reads_germline = data.d['reads'].d['germline'][ w.d['germline']][sample] print( w.latex(base_germline=segmented_reads_germline, base=segmented_reads, tag=tag)) if not out: print(r'\\') if data_analysis: for c in data_analysis.missing_clones(data): print('%% !! %s' % c) print(r' \hline')