Exemple #1
0
def main():
    e_univ = np.linspace(-2.57, 2.57, 1000)
    e_fuzzy_set_1 = [-1.285, 0.5, 'l_inf']
    e_fuzzy_set_2 = [0, 0.5, 'none']
    e_fuzzy_set_3 = [1.285, 0.5, 'r_inf']

    e_dot_univ = np.linspace(-4.15, 4.15, 1000)
    e_dot_fuzzy_set_1 = [-1.57, 0.5, 'l_inf']
    e_dot_fuzzy_set_2 = [0, 0.5, 'none']
    e_dot_fuzzy_set_3 = [1.57, 0.5, 'r_inf']

    i_univ = np.linspace(-30, 30, 1000)
    i_fuzzy_set_1 = [-15, 0.25, 'none']
    i_fuzzy_set_2 = [0, 0.25, 'none']
    i_fuzzy_set_3 = [15, 0.25, 'none']

    e_fuzz_set = [e_fuzzy_set_1, e_fuzzy_set_2, e_fuzzy_set_3]
    e_dot_fuzz_set = [e_dot_fuzzy_set_1, e_dot_fuzzy_set_2, e_dot_fuzzy_set_3]
    i_fuzz_set = [i_fuzzy_set_1, i_fuzzy_set_2, i_fuzzy_set_3]

    names = ["N", "Z", "P"]

    e_memship = np.zeros((3, ), dtype=object)
    e_dot_memship = np.zeros((3, ), dtype=object)
    i_memship = np.zeros((3, ), dtype=object)
    for i in range(len(e_fuzz_set)):
        e_memship[i] = fuzz.membership('gauss', e_fuzz_set[i], e_univ,
                                       names[i])
        e_dot_memship[i] = fuzz.membership('gauss', e_dot_fuzz_set[i],
                                           e_dot_univ, names[i])
        i_memship[i] = fuzz.membership('gauss', i_fuzz_set[i], i_univ,
                                       names[i])

    params = [e_memship, e_dot_memship, i_memship]
    x0 = [1.57, 0]
    t0 = 0
    t1 = 10
    dt = 0.001
    state = np.zeros((10001, 2))
    i = 0
    t = []
    r = ode(model).set_integrator('vode').set_f_params(
        params).set_initial_value(x0, t0)
    while r.successful() and r.t < t1:
        r.integrate(r.t + dt)
        xdes = (math.pi / 2) + math.sin(math.pi * r.t)
        state[i] = r.y
        state[i, 0] = xdes - state[i, 0]
        t.append(r.t)
        i += 1
    plt.plot(t, state[:, 0])
    plt.show()
Exemple #2
0
def main():
    # create fuzzy system
    # initial fuzzy set parameters
    b_0 = np.random.rand(5, 1) * 15.0
    c_0 = np.random.rand(5, 1) * 6.0
    sig_0 = np.random.rand(5, 1) * 2.0

    # create fuzzy sets
    memship = []
    for i in range(len(b_0)):
        p = [c_0[i, 0], sig_0[i, 0], "none"]
        memship.append(fuzz.membership("gauss", p, x, "none"))

    b, c, sig = simulate(memship, b_0, c_0, sig_0)
    memship = update_fuzzy_sets(memship, c, sig)
    b, c, sig = simulate(memship, b, c, sig)
    memship = update_fuzzy_sets(memship, c, sig)
    b, c, sig = simulate(memship, b, c, sig)
    memship = update_fuzzy_sets(memship, c, sig)
    b, c, sig = simulate(memship, b, c, sig)
    memship = update_fuzzy_sets(memship, c, sig)
    b, c, sig = simulate(memship, b, c, sig)
    memship = update_fuzzy_sets(memship, c, sig)
    b, c, sig = simulate(memship, b, c, sig)
    memship = update_fuzzy_sets(memship, c, sig)

    compare(b, c, sig, memship)
def setup_fuzz_sys():
    # define universes of input variables
    e_phi_univ = np.linspace(-math.pi / 2.0, math.pi / 2.0, 1000)
    e_theta_univ = np.linspace(-math.pi / 2.0, math.pi / 2.0, 1000)
    e_psi_univ = np.linspace(-math.pi, math.pi, 1000)
    de_phi_univ = np.linspace(-1.74, 1.74, 1000)
    de_theta_univ = np.linspace(-1.74, 1.74, 1000)
    de_psi_univ = np.linspace(-1.74, 1.74, 1000)

    e_univ = [e_phi_univ, e_theta_univ, e_psi_univ]
    de_univ = [de_phi_univ, de_theta_univ, de_psi_univ]

    # define centres for each input
    e_phi_c = np.array([-0.785, -0.3925, 0, 0.3925, 0.785])
    e_theta_c = np.array([-0.785, -0.3925, 0, 0.3925, 0.785])
    e_psi_c = np.array([-math.pi / 2, -0.785, 0, 0.785, math.pi / 2])
    de_phi_c = np.array([-0.872, -0.436, 0, 0.436, 0.785])
    de_theta_c = np.array([-0.872, -0.436, 0, 0.436, 0.785])
    de_psi_c = np.array([-0.872, -0.436, 0, 0.436, 0.785])

    e_c = [e_phi_c, e_theta_c, e_psi_c]
    de_c = [de_phi_c, de_theta_c, de_psi_c]

    # define spreads
    sig = 0.184

    # make memberships
    e_membership = []
    de_membership = []
    for i in range(n_angles):
        temp1 = []
        temp2 = []

        # get parameters for input
        c = e_c[i]
        dc = de_c[i]
        for j in range(n_sets):
            # make parameter vectors for sets
            p1 = [c[j], sig, "none"]
            p2 = [dc[j], sig, "none"]
            temp1.append(fuzz.membership("gauss", p1, e_univ[i], "none"))
            temp2.append(fuzz.membership("gauss", p2, de_univ[i], "none"))

        e_membership.append(temp1)
        de_membership.append(temp2)

    return [e_membership, de_membership]
Exemple #4
0
def main():
    x1_univ = np.linspace(-1000, 1000, 10000)
    x1_fuzz_set_1 = [-1, -1, 0]
    x1_fuzz_set_2 = [-1, 0, 1]
    x1_fuzz_set_3 = [0, 1, 1]
    x2_univ = np.linspace(-1000, 1000, 10000)
    x2_fuzz_set_1 = [-1, -1, 0]
    x2_fuzz_set_2 = [-1, 0, 1]
    x2_fuzz_set_3 = [0, 1, 1]
    names = ["left", "center", "right"]
    x1_fuzz_set = [x1_fuzz_set_1, x1_fuzz_set_2, x1_fuzz_set_3]
    x2_fuzz_set = [x2_fuzz_set_1, x2_fuzz_set_2, x2_fuzz_set_3]
    x1_fuzz_mem = []
    x2_fuzz_mem = []
    for i in range(len(x1_fuzz_set)):
        x1_fuzz_mem.append(
            fuzz.membership('trimf', x1_fuzz_set[i], x1_univ, names[i]))
        x2_fuzz_mem.append(
            fuzz.membership('trimf', x2_fuzz_set[i], x2_univ, names[i]))
    params = [x1_fuzz_mem, x2_fuzz_mem]
    x0 = [0, 0]
    t0 = 0
    t1 = 8
    dt = 0.001
    r = ode(model).set_integrator('vode').set_f_params(
        params).set_initial_value(x0, t0)
    state = np.zeros((8000, 2))
    t = []
    i = 0
    while r.successful() and r.t < t1:
        r.integrate(r.t + dt)
        state[i] = r.y
        t.append(r.t)
        i += 1
    plt.plot(t, state[:, 0], t, state[:, 1])
    plt.show()
def make_fuzzy_sets():
    # define universe of e
    e_univ = np.linspace(-3, 3, 1000)

    # centres and spreads
    c = [-1.5, 0, 1.5]
    sig = 0.484

    # make the fuzzy sets
    names = ["F1", "F2", "F3"]
    memship = []
    for i in range(len(c)):
        p = [c[i], sig, "none"]
        memship.append(fuzz.membership("gauss", p, e_univ, names[i]))

    return memship
Exemple #6
0
import fuzzy_tools as fuzz
import numpy as np

p1 = [-1, 0.5]
p2 = [0, 0.5]
p3 = [1, 0.5]
p = [p1, p2, p3]
univ = np.linspace(-3, 3, 1000)
a = []
for x in p:
    a.append(fuzz.membership('gauss', x, univ, 'test'))
for x in a:
    fuzz.make_memship(x)

fuzz.plot_memship(a)
def main():
    e_mem = []
    edot_mem = []
    v_mem = []

    e_fuzz_set_1 = [-0.5, 0.5, 'l_inf']
    e_fuzz_set_2 = [-0.25, 0.5, 'none']
    e_fuzz_set_3 = [0, 0.5, 'none']
    e_fuzz_set_4 = [0.25, 0.5, 'none']
    e_fuzz_set_5 = [0.5, 0.5, 'r_inf']
    e_univ = np.linspace(-20.5, 20.5, 120)

    edot_fuzz_set_1 = [-4, 0.5, 'l_inf']
    edot_fuzz_set_3 = [-2, 0.5, 'none']
    edot_fuzz_set_4 = [0, 0.5, 'none']
    edot_fuzz_set_5 = [2, 0.5, 'none']
    edot_fuzz_set_2 = [4, 0.5, 'r_inf']
    edot_univ = np.linspace(-30, 30, 100)

    v_fuzz_set_1 = [-10.0]
    v_fuzz_set_2 = [-5.0]
    v_fuzz_set_3 = [0.0]
    v_fuzz_set_4 = [5.0]
    v_fuzz_set_5 = [10.0]
    v_univ = np.linspace(-30, 30, 200)

    e_fuzz_set = [
        e_fuzz_set_1, e_fuzz_set_2, e_fuzz_set_3, e_fuzz_set_4, e_fuzz_set_5
    ]
    edot_fuzz_set = [
        edot_fuzz_set_1, edot_fuzz_set_2, edot_fuzz_set_3, edot_fuzz_set_4,
        edot_fuzz_set_5
    ]
    v_fuzz_set = [
        v_fuzz_set_1, v_fuzz_set_2, v_fuzz_set_3, v_fuzz_set_4, v_fuzz_set_5
    ]
    names = ['NL', 'NS', 'Z', 'PS', 'PL']
    for i in range(len(edot_fuzz_set)):
        e_mem.append(fuzz.membership('gauss', e_fuzz_set[i], e_univ, names[i]))
        edot_mem.append(
            fuzz.membership('gauss', edot_fuzz_set[i], edot_univ, names[i]))
        v_mem.append(
            fuzz.membership('singleton', v_fuzz_set[i], v_univ, names[i]))

    params = [e_mem, edot_mem, v_mem]

    x0 = [-0.12, 0.0]
    t0 = 0
    t1 = 10
    dt = 0.01
    r = ode(model).set_integrator('vode').set_initial_value(
        x0, t0).set_f_params(params)
    state = np.zeros((1001, 2))
    t = []
    i = 0

    while r.successful() and r.t < t1:
        r.integrate(r.t + dt)
        state[i] = r.y
        t.append(r.t)
        i += 1

    plt.plot(t, state[:, 0])
    plt.grid()
    plt.show()
g_cap = np.zeros_like(x1_cap)
for i in range(len(x1_cap)):
    g_cap[i] = sin(x1_cap[i]) * ((cos(x2_cap[i]))**2)

# fuzzy sets
centres = [-1.0, -0.5, 0, 0.5, 1]
spread = 0.2123
option = 'none'
params = []
names = 'none'
memship_1 = []
memship_2 = []
for x in centres:
    params.append([x, spread, option])
for x in params:
    memship_1.append(fuzz.membership('gauss', x, x1, names))
    memship_2.append(fuzz.membership('gauss', x, x2, names))

# fuzzified value set
fuzz_val_set_1 = np.zeros((len(x1_cap), len(memship_1)))
fuzz_val_set_2 = np.zeros((len(x2_cap), len(memship_2)))
temp = np.zeros((len(memship_1), ))
for i in range(len(x1_cap)):
    for j in range(len(memship_1)):
        fuzz.fuzzify(x1_cap[i], memship_1[j])
        temp[j] = memship_1[j].fuzz_val
    fuzz_val_set_1[i] = temp
for i in range(len(x2_cap)):
    for j in range(len(memship_2)):
        fuzz.fuzzify(x2_cap[i], memship_2[j])
        temp[j] = memship_2[j].fuzz_val
# universe
x = np.linspace(0, 6, 100)

# no of iterations
n_points = 200

# fuzzy sets
p1 = [0, 1.184, "none"]
p2 = [2, 1.184, "none"]
p3 = [4, 1.184, "none"]
p4 = [6, 1.184, "none"]
params = [p1, p2, p3, p4]
input_fuzz_set = []
for z in params:
    input_fuzz_set.append(fuzz.membership("gauss", z, x, "none"))

# to get parameter estimate
def get_estimate(data_point_x, prev_lam, prev_theta):
    # getting fuzzified value
    fuzz_val = []
    for mem in input_fuzz_set:
        fuzz.fuzzify(data_point_x, mem)
        fuzz_val.append(mem.fuzz_val)

    # premise values
    premise_val = np.zeros((len(fuzz_val),))
    for i in range(len(fuzz_val)):
        premise_val[i] = fuzz_val[i]

    # implied fuzzy set membership equals the premise values as we are usign singleton sets
Exemple #10
0
g = x - cos(1.5*x) + sin(0.4*x)

# datapoints for getting estimated g(x)
x_estimate = [0, 1, 2, 3, 4, 5, 6]
g_estimate = [-1.0, 1.3187, 3.7073, 4.1428, 4.0394, 5.5627, 7.5866]

# fuzzy sets
p1 = [0, 1.184, 'none']
p2 = [2, 1.184, 'none']
p3 = [4, 1.184, 'none']
p4 = [6, 1.184, 'none']
params = [p1, p2, p3, p4]
memship = []
names = 'none'
for z in params:
    memship.append(fuzz.membership('gauss', z, x, 'none'))

# premise memship and fuzzy basis
fuzz_val_set = np.zeros((len(x_estimate), len(memship)))
temp = np.zeros((len(memship),))
for i in range(len(x_estimate)):
    for j in range(len(memship)):
        fuzz.fuzzify(x_estimate[i], memship[j])
        temp[j] = memship[j].fuzz_val
    fuzz_val_set[i] = temp

# LSE
phi = np.zeros_like(fuzz_val_set)
for i in range(len(x_estimate)):
    a1 = np.sum(fuzz_val_set[i])
    b1 = (fuzz_val_set[i])/a1