def asvp_kernel(arg0, params=None, seed=None): logger = logging.getLogger('asvp') # Pool.map only supports a single parameter if params is None and seed is None: n, params, seed = arg0 else: n = arg0 params = copy.copy(params) load_matrix = params.pop("load_matrix") pump_params = pop_prefixed_params("pump", params) workout_params = pop_prefixed_params("workout", params) verbose = params.pop("verbose") if verbose: workout_params["verbose"] = True challenge_seed = params.pop("challenge_seed") if load_matrix is None: A, _ = load_svpchallenge_and_randomize(n, s=challenge_seed, seed=seed) if verbose: print(("Loaded challenge dim %d" % n)) else: A, _ = load_matrix_file(load_matrix) if verbose: print(("Loaded file '%s'" % load_matrix)) g6k = Siever(A, params, seed=seed) tracer = SieveTreeTracer(g6k, root_label=("svp-challenge", n), start_clocks=True) gh = gaussian_heuristic([g6k.M.get_r(i, i) for i in range(n)]) goal_r0 = (1.05**2) * gh if verbose: print(("gh = %f, goal_r0/gh = %f, r0/gh = %f" % (gh, goal_r0 / gh, sum([x * x for x in A[0]]) / gh))) flast = workout(g6k, tracer, 0, n, goal_r0=goal_r0, pump_params=pump_params, **workout_params) tracer.exit() stat = tracer.trace stat.data["flast"] = flast if verbose: logger.info("sol %d, %s" % (n, A[0])) norm = sum([x * x for x in A[0]]) if verbose: logger.info("norm %.1f ,hf %.5f" % (norm**.5, (norm / gh)**.5)) return tracer.trace
def svp_kernel(arg0, params=None, seed=None): # Pool.map only supports a single parameter if params is None and seed is None: n, params, seed = arg0 else: n = arg0 params = copy.copy(params) challenge_seed = params.pop("challenge_seed") alg = params.pop("svp/alg") workout_params = pop_prefixed_params("workout/", params) pump_params = pop_prefixed_params("pump/", params) goal_r0 = 1.001 * load_svpchallenge_norm(n, s=challenge_seed) A, bkz = load_svpchallenge_and_randomize(n, s=challenge_seed, seed=seed) g6k = Siever(A, params, seed=seed) tracer = SieveTreeTracer(g6k, root_label=("svp-exact", n), start_clocks=True) if alg == "enum": assert len(workout_params) + len(pump_params) == 0 bkz_params = fplll_bkz.Param( block_size=n, max_loops=1, strategies=fplll_bkz.DEFAULT_STRATEGY, flags=fplll_bkz.GH_BND, ) svp_enum(bkz, bkz_params, goal_r0) flast = 0 elif alg == "duc18": assert len(workout_params) + len(pump_params) == 0 flast = ducas18(g6k, tracer, goal=goal_r0) elif alg == "workout": flast = workout(g6k, tracer, 0, n, goal_r0=goal_r0, pump_params=pump_params, **workout_params) else: raise ValueError("Unrecognized algorithm for SVP") r0 = bkz.M.get_r(0, 0) if alg == "enum" else g6k.M.get_r(0, 0) if r0 > goal_r0: raise ValueError("Did not reach the goal") if 1.002 * r0 < goal_r0: raise ValueError( "Found a vector shorter than the goal for n=%d s=%d." % (n, challenge_seed)) tracer.exit() stat = tracer.trace stat.data["flast"] = flast return stat
def __call__(cls, M, predicate, block_size, invalidate_cache=lambda: None, threads=1, max_loops=8, **kwds): params = SieverParams(threads=threads) g6k = Siever(M, params) tracer = SieveTreeTracer(g6k, root_label="bkz-sieve", start_clocks=True) for b in range(20, block_size + 1, 10): pump_n_jump_bkz_tour(g6k, tracer, b, pump_params={"down_sieve": True}) auto_abort = BKZ.AutoAbort(M, M.d) found, ntests, solution = False, 0, None for tour in range(max_loops): pump_n_jump_bkz_tour(g6k, tracer, block_size, pump_params={"down_sieve": True}) invalidate_cache() if auto_abort.test_abort(): break with tracer.context("check"): for i, v in enumerate(M.B): ntests += 1 if predicate(v, standard_basis=True): solution = tuple([int(v_) for v_ in v]) found = True break if found: break tracer.exit() b0, b0e = M.get_r_exp(0, 0) return USVPPredSolverResults( success=found, ntests=ntests, solution=solution, b0=b0**(0.5) * 2**(b0e / 2.0), cputime=tracer.trace.data["cputime"], walltime=tracer.trace.data["walltime"], data=tracer.trace, )
def find_norm_kernel_trial(arg0, params=None, seed=None, goal_r0=None): # Pool.map only supports a single parameter if params is None and seed is None: n, params, seed = arg0 else: n = arg0 params = copy.copy(params) dim4free_dec = params.pop("workout/dim4free_dec") pump_params = pop_prefixed_params("pump", params) load_matrix = params.pop("load_matrix") verbose = params.pop("verbose") A, _ = load_matrix_file(load_matrix, randomize=True, seed=None, float_type="double") if A.nrows != n: raise ValueError( f"wrong dimension:: Expected dim(A) = {A.nrows}, got n = {n}") g6k = Siever(A, params, seed=seed) tracer = SieveTreeTracer(g6k, root_label=("svp-challenge", n), start_clocks=True) gh = gaussian_heuristic([g6k.M.get_r(i, i) for i in range(n)]) ds = list(range(0, n - 40, dim4free_dec))[::-1] + 10 * [0] if goal_r0 is None: goal_r0 = 1.1 * gh if verbose and n < 90: verbose = False for d in ds: workout(g6k, tracer, 0, n, dim4free_dec=dim4free_dec, goal_r0=goal_r0 * 1.001, pump_params=pump_params, verbose=verbose) tracer.exit() return int(g6k.M.get_r(0, 0)), gh
def full_sieve_kernel(arg0, params=None, seed=None): # Pool.map only supports a single parameter if params is None and seed is None: n, params, seed = arg0 else: n = arg0 pump_params = pop_prefixed_params("pump", params) verbose = params.pop("verbose") reserved_n = n params = params.new(reserved_n=reserved_n, otf_lift=False) challenge_seed = params.pop("challenge_seed") A, _ = load_svpchallenge_and_randomize(n, s=challenge_seed, seed=seed) g6k = Siever(A, params, seed=seed) tracer = SieveTreeTracer(g6k, root_label=("full-sieve", n), start_clocks=True) # Actually runs a workout with very large decrements, so that the basis is kind-of reduced # for the final full-sieve workout( g6k, tracer, 0, n, dim4free_min=0, dim4free_dec=15, pump_params=pump_params, verbose=verbose, ) return tracer.exit()
def hkz_kernel(arg0, params=None, seed=None): # Pool.map only supports a single parameter if params is None and seed is None: n, params, seed = arg0 else: n = arg0 reserved_n = n params = params.new(reserved_n=reserved_n, otf_lift=False) verbose = params.pop("verbose") pump_params = pop_prefixed_params("pump", params) workout_params = pop_prefixed_params("workout", params) verbose = params.pop("verbose") if verbose: workout_params["verbose"] = True challenge_seed = params.pop("challenge_seed") A, _ = load_svpchallenge_and_randomize(n, s=challenge_seed, seed=seed) g6k = Siever(A, params, seed=seed) tracer = SieveTreeTracer(g6k, root_label=("hkz", n), start_clocks=True) # runs a workout woth pump-down down until the end workout(g6k, tracer, 0, n, pump_params=pump_params, verbose=verbose, **workout_params) #Just making sure pump(g6k, tracer, 15, n-15, 0, **pump_params) g6k.lll(0, n) return tracer.exit()
def asvp_kernel(arg0, params=None, seed=None): logger = logging.getLogger('asvp') # Pool.map only supports a single parameter if params is None and seed is None: n, params, seed = arg0 else: n = arg0 params = copy.copy(params) load_matrix = params.pop("load_matrix") pump_params = pop_prefixed_params("pump", params) workout_params = pop_prefixed_params("workout", params) verbose = params.pop("verbose") if verbose: workout_params["verbose"] = True challenge_seed = params.pop("challenge_seed") if load_matrix is None: A, _ = load_svpchallenge_and_randomize(n, s=challenge_seed, seed=seed) if verbose: print("Loaded challenge dim %d" % n) else: A, _ = load_matrix_file(load_matrix) if verbose: print("Loaded file '%s'" % load_matrix) g6k = Siever(A, params, seed=seed) tracer = SieveTreeTracer(g6k, root_label=("svp-challenge", n), start_clocks=True) gh = gaussian_heuristic([g6k.M.get_r(i, i) for i in range(n)]) flast = workout(g6k, tracer, 0, n, pump_params=pump_params, **workout_params) tracer.exit() stat = tracer.trace f = workout_params["dim4free_min"] gh2 = gaussian_heuristic([g6k.M.get_r(i, i) for i in range(f, n)]) quality = (gh * (n - f)) / (gh2 * n) stat.data["quality"] = quality print >> sys.stderr, g6k.M.B return tracer.trace
def asvp_kernel(arg0, params=None, seed=None): # Pool.map only supports a single parameter if params is None and seed is None: n, params, seed = arg0 else: n = arg0 params = copy.copy(params) load_matrix = params.pop("load_matrix") goal_r0__gh = params.pop('goal_r0__gh') pump_params = pop_prefixed_params("pump", params) workout_params = pop_prefixed_params("workout", params) verbose = params.pop("verbose") if verbose: workout_params["verbose"] = True A, _ = load_matrix_file(load_matrix, randomize=False, seed=None, float_type="double") if verbose: print(("Loaded file '%s'" % load_matrix)) g6k = Siever(A, params, seed=seed) tracer = SieveTreeTracer(g6k, root_label=("svp-challenge", n), start_clocks=True) gh = gaussian_heuristic([g6k.M.get_r(i, i) for i in range(n)]) goal_r0 = (goal_r0__gh**2) * gh if verbose: print(("gh = %f, goal_r0/gh = %f, r0/gh = %f" % (gh, goal_r0/gh, sum([x*x for x in A[0]])/gh))) flast = workout(g6k, tracer, 0, n, goal_r0=goal_r0, **workout_params) tracer.exit() stat = tracer.trace sol = tuple(A[0]) stat.data["flast"] = flast tracer.trace.data['res'] = A if verbose: print(f"svp: sol {sol}") norm = sum([x*x for x in sol]) if verbose: print("svp: norm %.1f ,hf %.5f" % (norm**.5, (norm/gh)**.5)) return tracer.trace
def plain_sieve_kernel(arg0, params=None, seed=None): # Pool.map only supports a single parameter if params is None and seed is None: n, params, seed = arg0 else: n = arg0 alg = params.pop("alg") reserved_n = n params = params.new(reserved_n=reserved_n, otf_lift=False) A, _ = load_svpchallenge_and_randomize(n, s=0, seed=seed) g6k = Siever(A, params, seed=seed) tracer = SieveTreeTracer(g6k, root_label=("plain-sieve", n), start_clocks=True) g6k.initialize_local(0, 0, n) g6k(alg=alg, tracer=tracer) tracer.exit() return tracer.trace
def bkz_kernel(arg0, params=None, seed=None): """ Run the BKZ algorithm with different parameters. :param d: the dimension of the lattices to BKZ reduce :param params: parameters for BKZ: - bkz/alg: choose the underlying BKZ from {fpylll, naive, pump_n_jump, slide} - bkz/blocksizes: given as low:high:inc perform BKZ reduction with blocksizes in range(low, high, inc) (after some light) prereduction - bkz/pre_blocksize: prereduce lattice with fpylll BKZ up to this blocksize - bkz/tours: the number of tours to do for each blocksize - bkz/extra_dim4free: lift to indices extra_dim4free earlier in the lattice than the currently sieved block - bkz/jump: the number of blocks to jump in a BKZ tour after each pump - bkz/dim4free_fun: in blocksize x, try f(x) dimensions for free, give as 'lambda x: f(x)', e.g. 'lambda x: 11.5 + 0.075*x' - pump/down_sieve: sieve after each insert in the pump-down phase of the pump - slide/overlap: shift of the dual blocks when running slide reduction - challenge_seed: a seed to randomise the generated lattice - dummy_tracer: use a dummy tracer which capture less information - verbose: print tracer information throughout BKZ run """ # Pool.map only supports a single parameter if params is None and seed is None: d, params, seed = arg0 else: d = arg0 # params for underlying BKZ/workout/pump dim4free_fun = params.pop("bkz/dim4free_fun") extra_dim4free = params.pop("bkz/extra_dim4free") jump = params.pop("bkz/jump") overlap = params.pop("slide/overlap") pump_params = pop_prefixed_params("pump", params) workout_params = pop_prefixed_params("workout", params) # flow of the bkz experiment algbkz = params.pop("bkz/alg") blocksizes = params.pop("bkz/blocksizes") blocksizes = eval("range(%s)" % re.sub(":", ",", blocksizes)) pre_blocksize = params.pop("bkz/pre_blocksize") tours = params.pop("bkz/tours") # misc verbose = params.pop("verbose") dont_trace = params.pop("dummy_tracer", False) if blocksizes[-1] > d: print('set a smaller maximum blocksize with --blocksizes') return challenge_seed = params.pop("challenge_seed") A, bkz = load_prebkz(d, s=challenge_seed, blocksize=pre_blocksize) MM = GSO.Mat(A, float_type="double", U=IntegerMatrix.identity(A.nrows, int_type=A.int_type), UinvT=IntegerMatrix.identity(A.nrows, int_type=A.int_type)) g6k = Siever(MM, params, seed=seed) if dont_trace: tracer = dummy_tracer else: tracer = SieveTreeTracer(g6k, root_label=("bkz", d), start_clocks=True) if algbkz == "fpylll": M = bkz.M else: M = g6k.M T0 = time.time() for blocksize in blocksizes: for t in range(tours): with tracer.context("tour", t, dump_gso=True): if algbkz == "fpylll": par = BKZ_FPYLLL.Param( blocksize, strategies=BKZ_FPYLLL.DEFAULT_STRATEGY, max_loops=1) bkz(par) elif algbkz == "naive": naive_bkz_tour(g6k, tracer, blocksize, extra_dim4free=extra_dim4free, dim4free_fun=dim4free_fun, workout_params=workout_params, pump_params=pump_params) elif algbkz == "pump_and_jump": pump_n_jump_bkz_tour(g6k, tracer, blocksize, jump=jump, dim4free_fun=dim4free_fun, extra_dim4free=extra_dim4free, pump_params=pump_params) elif algbkz == "slide": slide_tour(g6k, dummy_tracer, blocksize, overlap=overlap, dim4free_fun=dim4free_fun, extra_dim4free=extra_dim4free, workout_params=workout_params, pump_params=pump_params) else: raise ValueError("bkz/alg=%s not recognized." % algbkz) if verbose: slope = basis_quality(M)["/"] fmt = "{'alg': '%25s', 'jump':%2d, 'pds':%d, 'extra_d4f': %2d, 'beta': %2d, 'slope': %.5f, 'total walltime': %.3f}" # noqa print(fmt % (algbkz + "+" + ("enum" if algbkz == "fpylll" else g6k.params.default_sieve), jump, pump_params["down_sieve"], extra_dim4free, blocksize, slope, time.time() - T0)) tracer.exit() slope = basis_quality(M)["/"] stat = tracer.trace try: stat.data["slope"] = np.array(slope) return stat except AttributeError: return None
def asvp_kernel(arg0, params=None, seed=None): logger = logging.getLogger('asvp') # Pool.map only supports a single parameter if params is None and seed is None: n, params, seed = arg0 else: n = arg0 params = copy.copy(params) load_matrix = params.pop("load_matrix") pre_bkz = params.pop("pre_bkz") pump_params = pop_prefixed_params("pump", params) workout_params = pop_prefixed_params("workout", params) verbose = params.pop("verbose") if verbose: workout_params["verbose"] = True challenge_seed = params.pop("challenge_seed") high_prec = params.pop("high_prec") trace = params.pop("trace") if load_matrix is None: A, bkz = load_svpchallenge_and_randomize(n, s=challenge_seed, seed=seed) if verbose: print("Loaded challenge dim %d" % n) if pre_bkz is not None: par = BKZ_FPYLLL.Param(pre_bkz, strategies=BKZ_FPYLLL.DEFAULT_STRATEGY, max_loops=1) bkz(par) else: A, _ = load_matrix_file(load_matrix, doLLL=False, high_prec=high_prec) if verbose: print("Loaded file '%s'" % load_matrix) g6k = Siever(A, params, seed=seed) if trace: tracer = SieveTreeTracer(g6k, root_label=("svp-challenge", n), start_clocks=True) else: tracer = dummy_tracer gh = gaussian_heuristic([g6k.M.get_r(i, i) for i in range(n)]) gamma = params.pop("gamma") if gamma is None: goal_r0 = (1.05**2) * gh else: goal_r0 = gamma**2 * gh if verbose: print("gh = %f, goal_r0/gh = %f, r0/gh = %f" % (gh, goal_r0 / gh, sum([x * x for x in A[0]]) / gh)) flast = workout(g6k, tracer, 0, n, goal_r0=goal_r0, pump_params=pump_params, **workout_params) if verbose: logger.info("sol %d, %s" % (n, A[0])) norm = sum([x * x for x in A[0]]) if verbose: logger.info("norm %.1f ,hf %.5f" % (norm**.5, (norm / gh)**.5)) tracer.exit() if hasattr(tracer, "trace"): stat = tracer.trace stat.data["flast"] = flast return stat else: return None
def __call__(cls, M, predicate, invalidate_cache=lambda: None, preproc_offset=20, threads=1, ph=0, **kwds): # TODO bkz_sieve would be neater here if preproc_offset and M.d >= 40: bkz_res = usvp_pred_bkz_enum_solve( M, predicate, block_size=max(M.d - preproc_offset, 2), max_loops=8, threads=threads, invalidate_cache=invalidate_cache, ) ntests = bkz_res.ntests if bkz_res.success: # this might be enough return bkz_res else: bkz_res = None ntests = 0 from fpylll import IntegerMatrix # reduce size of entries B = IntegerMatrix(M.B.nrows, M.B.ncols) for i in range(M.B.nrows): for j in range(M.B.ncols): B[i, j] = M.B[i, j] // 2**ph params = SieverParams(reserved_n=M.d, otf_lift=False, threads=threads) g6k = Siever(B, params) tracer = SieveTreeTracer(g6k, root_label="sieve", start_clocks=True) g6k.initialize_local(0, M.d // 2, M.d) while g6k.l: g6k.extend_left() with tracer.context("sieve"): try: g6k() except SaturationError: pass # fill the database with g6k.temp_params(**kwds): g6k() invalidate_cache() found, solution = False, None with tracer.context("check"): for v in g6k.itervalues(): # heuristic: v has very small entries ntests += 1 if predicate(v, standard_basis=False): found = True solution = tuple( [int(v_) for v_ in g6k.M.B.multiply_left(v)]) break tracer.exit() cputime = tracer.trace.data[ "cputime"] + bkz_res.cputime if bkz_res else 0 walltime = tracer.trace.data[ "walltime"] + bkz_res.walltime if bkz_res else 0 b0, b0e = M.get_r_exp(0, 0) return USVPPredSolverResults( success=found, ntests=ntests, solution=solution, b0=b0**(0.5) * 2**(b0e / 2.0), cputime=cputime, walltime=walltime, data=tracer.trace, )
def __call__(cls, M, predicate, invalidate_cache=lambda: None, preproc_offset=20, threads=1, **kwds): if preproc_offset and M.d >= 40: bkz_res = usvp_pred_bkz_sieve_solve( M, predicate, block_size=max(M.d - preproc_offset, 2), max_loops=8, threads=threads, invalidate_cache=invalidate_cache, ) ntests = bkz_res.ntests if bkz_res.success: # this might be enough return bkz_res else: bkz_res = None ntests = 0 params = SieverParams(reserved_n=M.d, otf_lift=False, threads=threads) g6k = Siever(M, params) tracer = SieveTreeTracer(g6k, root_label="sieve", start_clocks=True) workout(g6k, tracer, 0, M.d, dim4free_min=0, dim4free_dec=15) invalidate_cache() found, solution = False, None with tracer.context("check"): # check if the workout solved it for us for i in range(g6k.M.d): ntests += 1 if predicate(g6k.M.B[i], standard_basis=True): found = True solution = tuple([int(v_) for v_ in g6k.M.B[i]]) break if found: tracer.exit() b0, b0e = M.get_r_exp(0, 0) return USVPPredSolverResults( success=found, ntests=ntests, solution=solution, b0=b0**(0.5) * 2**(b0e / 2.0), cputime=tracer.trace.data["cputime"], walltime=tracer.trace.data["walltime"], data=tracer.trace, ) with tracer.context("sieve"): try: g6k() except SaturationError: pass while g6k.l: g6k.extend_left() with tracer.context("sieve"): try: g6k() except SaturationError: pass # fill the database with g6k.temp_params(**kwds): g6k() invalidate_cache() with tracer.context("check"): for i in range(g6k.M.d): ntests += 1 if predicate(g6k.M.B[i], standard_basis=True): found = True solution = tuple([int(v_) for v_ in g6k.M.B[i]]) break if not found: for v in g6k.itervalues(): ntests += 1 if predicate(v, standard_basis=False): found = True solution = tuple( [int(v_) for v_ in g6k.M.B.multiply_left(v)]) break tracer.exit() cputime = tracer.trace.data[ "cputime"] + bkz_res.cputime if bkz_res else 0 walltime = tracer.trace.data[ "walltime"] + bkz_res.walltime if bkz_res else 0 b0, b0e = M.get_r_exp(0, 0) return USVPPredSolverResults( success=found, ntests=ntests, solution=solution, b0=b0**(0.5) * 2**(b0e / 2.0), cputime=cputime, walltime=walltime, data=tracer.trace, )
def svp_kernel(arg0, params=None, seed=None): # Pool.map only supports a single parameter if params is None and seed is None: n, params, seed = arg0 else: n = arg0 params = copy.copy(params) load_matrix = params.pop("load_matrix") alg = params.pop("svp/alg") goal_r0 = 1.001 * params.pop('goal_r0') workout_params = pop_prefixed_params("workout/", params) pump_params = pop_prefixed_params("pump/", params) verbose = params.pop("verbose") if verbose and alg == "workout": workout_params["verbose"] = True A, bkz = load_matrix_file(load_matrix, randomize=True, seed=seed, float_type="double") if verbose: print(("Loaded file '%s'" % load_matrix)) g6k = Siever(A, params, seed=seed) tracer = SieveTreeTracer(g6k, root_label=("svp-exact", n), start_clocks=True) if alg == "enum": assert len(workout_params) + len(pump_params) == 0 bkz_params = fplll_bkz.Param(block_size=n, max_loops=1, strategies=fplll_bkz.DEFAULT_STRATEGY, flags=fplll_bkz.GH_BND) svp_enum(bkz, bkz_params, goal_r0) flast = -1 elif alg == "duc18": assert len(workout_params) + len(pump_params) == 0 flast = ducas18(g6k, tracer, goal=goal_r0) elif alg == "workout": flast = workout(g6k, tracer, 0, n, goal_r0=goal_r0, pump_params=pump_params, **workout_params) else: raise ValueError("Unrecognized algorithm for SVP") r0 = bkz.M.get_r(0, 0) if alg == "enum" else g6k.M.get_r(0, 0) if r0 > goal_r0: raise ValueError('Did not reach the goal') if 1.002 * r0 < goal_r0: raise ValueError( 'Found a vector(%d) shorter than the goal(%d) for n=%d.' % (r0, goal_r0, n)) if verbose: print("sol %d, %s" % (n, A[0])) tracer.exit() stat = tracer.trace stat.data["flast"] = flast tracer.trace.data['res'] = A return stat