Exemple #1
0
    'logC': [],
    'logA_std': [],
    'ind_std': [],
    'logB_std': [],
    'logC_std': []
}

# for gal in ['M33', 'M31']:
for gal in ['M31']:

    plot_folder = osjoin(data_path, "{}_plots".format(gal))
    if not os.path.exists(plot_folder):
        os.mkdir(plot_folder)

    gal_obj = Galaxy(gal)
    gal_obj.distance = fitinfo_dict[gal]['distance']

    if gal == 'M31':
        # Add 180 deg to the PA
        gal_obj.position_angle += 180 * u.deg

    filename = osjoin(data_path, gal, fitinfo_dict[gal]['filename'])

    hdu_coldens = fits.open(filename)

    proj_coldens = Projection.from_hdu(
        fits.PrimaryHDU(hdu_coldens[0].data[0].squeeze(),
                        hdu_coldens[0].header))

    # Get minimal size
    proj_coldens = proj_coldens[nd.find_objects(np.isfinite(proj_coldens))[0]]
Exemple #2
0
# The models from the peak velocity aren't as biased, based on comparing
# the VLA and VLA+GBT velocity curves. Using these as the defaults

folder_name = "diskfit_peakvels_noasymm_noradial_nowarp_output"

param_name = \
    fourteenB_HI_data_path("{}/rad.out.params.csv".format(folder_name))

param_table = Table.read(param_name)

gal = Galaxy("M33")

update_galaxy_params(gal, param_table)

# Load in the model from the feathered data as well.
folder_name = "diskfit_peakvels_noasymm_noradial_nowarp_output"

param_name = \
    fourteenB_HI_data_wGBT_path("{}/rad.out.params.csv".format(folder_name))

param_table = Table.read(param_name)

gal_feath = Galaxy("M33")

update_galaxy_params(gal_feath, param_table)

# Force 840 kpc for the distance

gal.distance = 840 * u.kpc
gal_feath.distance = 840 * u.kpc