'logC': [], 'logA_std': [], 'ind_std': [], 'logB_std': [], 'logC_std': [] } # for gal in ['M33', 'M31']: for gal in ['M31']: plot_folder = osjoin(data_path, "{}_plots".format(gal)) if not os.path.exists(plot_folder): os.mkdir(plot_folder) gal_obj = Galaxy(gal) gal_obj.distance = fitinfo_dict[gal]['distance'] if gal == 'M31': # Add 180 deg to the PA gal_obj.position_angle += 180 * u.deg filename = osjoin(data_path, gal, fitinfo_dict[gal]['filename']) hdu_coldens = fits.open(filename) proj_coldens = Projection.from_hdu( fits.PrimaryHDU(hdu_coldens[0].data[0].squeeze(), hdu_coldens[0].header)) # Get minimal size proj_coldens = proj_coldens[nd.find_objects(np.isfinite(proj_coldens))[0]]
# The models from the peak velocity aren't as biased, based on comparing # the VLA and VLA+GBT velocity curves. Using these as the defaults folder_name = "diskfit_peakvels_noasymm_noradial_nowarp_output" param_name = \ fourteenB_HI_data_path("{}/rad.out.params.csv".format(folder_name)) param_table = Table.read(param_name) gal = Galaxy("M33") update_galaxy_params(gal, param_table) # Load in the model from the feathered data as well. folder_name = "diskfit_peakvels_noasymm_noradial_nowarp_output" param_name = \ fourteenB_HI_data_wGBT_path("{}/rad.out.params.csv".format(folder_name)) param_table = Table.read(param_name) gal_feath = Galaxy("M33") update_galaxy_params(gal_feath, param_table) # Force 840 kpc for the distance gal.distance = 840 * u.kpc gal_feath.distance = 840 * u.kpc