def dvcircdR(self,R): from galpy.potential import dvcircdR if self._interpdvcircdr: indx= (R >= self._rgrid[0])*(R <= self._rgrid[-1]) out= numpy.empty_like(R) if numpy.sum(indx) > 0: if self._logR: out[indx]= self._dvcircdrInterp(numpy.log(R[indx])) else: out[indx]= self._dvcircdrInterp(R[indx]) if numpy.sum(True^indx) > 0: out[True^indx]= dvcircdR(self._origPot,R[True^indx]) return out else: return dvcircdR(self._origPot,R)
def estimateBIsochrone(R,z,pot=None): """ NAME: estimateBIsochrone PURPOSE: Estimate a good value for the scale of the isochrone potential by matching the slope of the rotation curve INPUT: R,z = coordinates (if these are arrays, the median estimated delta is returned, i.e., if this is an orbit) pot= Potential instance or list thereof OUTPUT: b if 1 R,Z given bmin,bmedian,bmax if multiple R given HISTORY: 2013-09-12 - Written - Bovy (IAS) """ if pot is None: #pragma: no cover raise IOError("pot= needs to be set to a Potential instance or list thereof") if isinstance(R,nu.ndarray): bs= nu.array([estimateBIsochrone(R[ii],z[ii],pot=pot) for ii in range(len(R))]) return (nu.amin(bs[True-nu.isnan(bs)]), nu.median(bs[True-nu.isnan(bs)]), nu.amax(bs[True-nu.isnan(bs)])) else: r2= R**2.+z**2 r= math.sqrt(r2) dlvcdlr= dvcircdR(pot,r)/vcirc(pot,r)*r try: b= optimize.brentq(lambda x: dlvcdlr-(x/math.sqrt(r2+x**2.)-0.5*r2/(r2+x**2.)), 0.01,100.) except: #pragma: no cover b= nu.nan return b
def dvcircdR(self,R): if self._interpdvcircdr: if self._logR: return self._dvcircdrInterp(numpy.log(R)) else: return self._dvcircdrInterp(R) else: from galpy.potential import dvcircdR return dvcircdR(self._origPot,R)
def estimateBIsochrone(pot,R,z,phi=None): """ NAME: estimateBIsochrone PURPOSE: Estimate a good value for the scale of the isochrone potential by matching the slope of the rotation curve INPUT: pot- Potential instance or list thereof R,z - coordinates (if these are arrays, the median estimated delta is returned, i.e., if this is an orbit) phi= (None) azimuth to use for non-axisymmetric potentials (array if R and z are arrays) OUTPUT: b if 1 R,Z given bmin,bmedian,bmax if multiple R given HISTORY: 2013-09-12 - Written - Bovy (IAS) 2016-02-20 - Changed input order to allow physical conversions - Bovy (UofT) 2016-06-28 - Added phi= keyword for non-axisymmetric potential - Bovy (UofT) """ if pot is None: #pragma: no cover raise IOError("pot= needs to be set to a Potential instance or list thereof") if isinstance(R,nu.ndarray): if phi is None: phi= [None for r in R] bs= nu.array([estimateBIsochrone(pot,R[ii],z[ii],phi=phi[ii], use_physical=False) for ii in range(len(R))]) return nu.array([nu.amin(bs[True-nu.isnan(bs)]), nu.median(bs[True-nu.isnan(bs)]), nu.amax(bs[True-nu.isnan(bs)])]) else: r2= R**2.+z**2 r= math.sqrt(r2) dlvcdlr= dvcircdR(pot,r,phi=phi,use_physical=False)/vcirc(pot,r,phi=phi,use_physical=False)*r try: b= optimize.brentq(lambda x: dlvcdlr-(x/math.sqrt(r2+x**2.)-0.5*r2/(r2+x**2.)), 0.01,100.) except: #pragma: no cover b= nu.nan return b
def estimateBIsochrone(pot,R,z,phi=None): """ NAME: estimateBIsochrone PURPOSE: Estimate a good value for the scale of the isochrone potential by matching the slope of the rotation curve INPUT: pot- Potential instance or list thereof R,z - coordinates (if these are arrays, the median estimated delta is returned, i.e., if this is an orbit) phi= (None) azimuth to use for non-axisymmetric potentials (array if R and z are arrays) OUTPUT: b if 1 R,Z given bmin,bmedian,bmax if multiple R given HISTORY: 2013-09-12 - Written - Bovy (IAS) 2016-02-20 - Changed input order to allow physical conversions - Bovy (UofT) 2016-06-28 - Added phi= keyword for non-axisymmetric potential - Bovy (UofT) """ if pot is None: #pragma: no cover raise IOError("pot= needs to be set to a Potential instance or list thereof") if isinstance(R,nu.ndarray): if phi is None: phi= [None for r in R] bs= nu.array([estimateBIsochrone(pot,R[ii],z[ii],phi=phi[ii], use_physical=False) for ii in range(len(R))]) return nu.array([nu.amin(bs[True^nu.isnan(bs)]), nu.median(bs[True^nu.isnan(bs)]), nu.amax(bs[True^nu.isnan(bs)])]) else: r2= R**2.+z**2 r= math.sqrt(r2) dlvcdlr= dvcircdR(pot,r,phi=phi,use_physical=False)/vcirc(pot,r,phi=phi,use_physical=False)*r try: b= optimize.brentq(lambda x: dlvcdlr-(x/math.sqrt(r2+x**2.)-0.5*r2/(r2+x**2.)), 0.01,100.) except: #pragma: no cover b= nu.nan return b
def __init__(self, RZPot=None,rgrid=(numpy.log(0.01),numpy.log(20.),101), zgrid=(0.,1.,101),logR=True, interpPot=False,interpRforce=False,interpzforce=False, interpDens=False, interpvcirc=False, interpdvcircdr=False, interpepifreq=False,interpverticalfreq=False, ro=None,vo=None, use_c=False,enable_c=False,zsym=True, numcores=None): """ NAME: __init__ PURPOSE: Initialize an interpRZPotential instance INPUT: RZPot - RZPotential to be interpolated rgrid - R grid to be given to linspace as in rs= linspace(*rgrid) zgrid - z grid to be given to linspace as in zs= linspace(*zgrid) logR - if True, rgrid is in the log of R so logrs= linspace(*rgrid) interpPot, interpRforce, interpzforce, interpDens,interpvcirc, interpepifreq, interpverticalfreq, interpdvcircdr= if True, interpolate these functions use_c= use C to speed up the calculation of the grid enable_c= enable use of C for interpolations zsym= if True (default), the potential is assumed to be symmetric around z=0 (so you can use, e.g., zgrid=(0.,1.,101)). numcores= if set to an integer, use this many cores (only used for vcirc, dvcircdR, epifreq, and verticalfreq; NOT NECESSARILY FASTER, TIME TO MAKE SURE) ro=, vo= distance and velocity scales for translation into internal units (default from configuration file) OUTPUT: instance HISTORY: 2010-07-21 - Written - Bovy (NYU) 2013-01-24 - Started with new implementation - Bovy (IAS) """ if isinstance(RZPot,interpRZPotential): from galpy.potential import PotentialError raise PotentialError('Cannot setup interpRZPotential with another interpRZPotential') # Propagate ro and vo roSet= True voSet= True if ro is None: if isinstance(RZPot,list): ro= RZPot[0]._ro roSet= RZPot[0]._roSet else: ro= RZPot._ro roSet= RZPot._roSet if vo is None: if isinstance(RZPot,list): vo= RZPot[0]._vo voSet= RZPot[0]._voSet else: vo= RZPot._vo voSet= RZPot._voSet Potential.__init__(self,amp=1.,ro=ro,vo=vo) # Turn off physical if it hadn't been on if not roSet: self._roSet= False if not voSet: self._voSet= False self._origPot= RZPot self._rgrid= numpy.linspace(*rgrid) self._logR= logR if self._logR: self._rgrid= numpy.exp(self._rgrid) self._logrgrid= numpy.log(self._rgrid) self._zgrid= numpy.linspace(*zgrid) self._interpPot= interpPot self._interpRforce= interpRforce self._interpzforce= interpzforce self._interpDens= interpDens self._interpvcirc= interpvcirc self._interpdvcircdr= interpdvcircdr self._interpepifreq= interpepifreq self._interpverticalfreq= interpverticalfreq self._enable_c= enable_c*ext_loaded self.hasC= self._enable_c self._zsym= zsym if interpPot: if use_c*ext_loaded: self._potGrid, err= calc_potential_c(self._origPot,self._rgrid,self._zgrid) else: from galpy.potential import evaluatePotentials potGrid= numpy.zeros((len(self._rgrid),len(self._zgrid))) for ii in range(len(self._rgrid)): for jj in range(len(self._zgrid)): potGrid[ii,jj]= evaluatePotentials(self._origPot,self._rgrid[ii],self._zgrid[jj]) self._potGrid= potGrid if self._logR: self._potInterp= interpolate.RectBivariateSpline(self._logrgrid, self._zgrid, self._potGrid, kx=3,ky=3,s=0.) else: self._potInterp= interpolate.RectBivariateSpline(self._rgrid, self._zgrid, self._potGrid, kx=3,ky=3,s=0.) if enable_c*ext_loaded: self._potGrid_splinecoeffs= calc_2dsplinecoeffs_c(self._potGrid) if interpRforce: if use_c*ext_loaded: self._rforceGrid, err= calc_potential_c(self._origPot,self._rgrid,self._zgrid,rforce=True) else: from galpy.potential import evaluateRforces rforceGrid= numpy.zeros((len(self._rgrid),len(self._zgrid))) for ii in range(len(self._rgrid)): for jj in range(len(self._zgrid)): rforceGrid[ii,jj]= evaluateRforces(self._origPot,self._rgrid[ii],self._zgrid[jj]) self._rforceGrid= rforceGrid if self._logR: self._rforceInterp= interpolate.RectBivariateSpline(self._logrgrid, self._zgrid, self._rforceGrid, kx=3,ky=3,s=0.) else: self._rforceInterp= interpolate.RectBivariateSpline(self._rgrid, self._zgrid, self._rforceGrid, kx=3,ky=3,s=0.) if enable_c*ext_loaded: self._rforceGrid_splinecoeffs= calc_2dsplinecoeffs_c(self._rforceGrid) if interpzforce: if use_c*ext_loaded: self._zforceGrid, err= calc_potential_c(self._origPot,self._rgrid,self._zgrid,zforce=True) else: from galpy.potential import evaluatezforces zforceGrid= numpy.zeros((len(self._rgrid),len(self._zgrid))) for ii in range(len(self._rgrid)): for jj in range(len(self._zgrid)): zforceGrid[ii,jj]= evaluatezforces(self._origPot,self._rgrid[ii],self._zgrid[jj]) self._zforceGrid= zforceGrid if self._logR: self._zforceInterp= interpolate.RectBivariateSpline(self._logrgrid, self._zgrid, self._zforceGrid, kx=3,ky=3,s=0.) else: self._zforceInterp= interpolate.RectBivariateSpline(self._rgrid, self._zgrid, self._zforceGrid, kx=3,ky=3,s=0.) if enable_c*ext_loaded: self._zforceGrid_splinecoeffs= calc_2dsplinecoeffs_c(self._zforceGrid) if interpDens: from galpy.potential import evaluateDensities densGrid= numpy.zeros((len(self._rgrid),len(self._zgrid))) for ii in range(len(self._rgrid)): for jj in range(len(self._zgrid)): densGrid[ii,jj]= evaluateDensities(self._origPot,self._rgrid[ii],self._zgrid[jj]) self._densGrid= densGrid if self._logR: self._densInterp= interpolate.RectBivariateSpline(self._logrgrid, self._zgrid, numpy.log(self._densGrid+10.**-10.), kx=3,ky=3,s=0.) else: self._densInterp= interpolate.RectBivariateSpline(self._rgrid, self._zgrid, numpy.log(self._densGrid+10.**-10.), kx=3,ky=3,s=0.) if interpvcirc: from galpy.potential import vcirc if not numcores is None: self._vcircGrid= multi.parallel_map((lambda x: vcirc(self._origPot,self._rgrid[x])), list(range(len(self._rgrid))),numcores=numcores) else: self._vcircGrid= numpy.array([vcirc(self._origPot,r) for r in self._rgrid]) if self._logR: self._vcircInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid,self._vcircGrid,k=3) else: self._vcircInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid,self._vcircGrid,k=3) if interpdvcircdr: from galpy.potential import dvcircdR if not numcores is None: self._dvcircdrGrid= multi.parallel_map((lambda x: dvcircdR(self._origPot,self._rgrid[x])), list(range(len(self._rgrid))),numcores=numcores) else: self._dvcircdrGrid= numpy.array([dvcircdR(self._origPot,r) for r in self._rgrid]) if self._logR: self._dvcircdrInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid,self._dvcircdrGrid,k=3) else: self._dvcircdrInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid,self._dvcircdrGrid,k=3) if interpepifreq: from galpy.potential import epifreq if not numcores is None: self._epifreqGrid= numpy.array(multi.parallel_map((lambda x: epifreq(self._origPot,self._rgrid[x])), list(range(len(self._rgrid))),numcores=numcores)) else: self._epifreqGrid= numpy.array([epifreq(self._origPot,r) for r in self._rgrid]) indx= True^numpy.isnan(self._epifreqGrid) if numpy.sum(indx) < 4: if self._logR: self._epifreqInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid[indx],self._epifreqGrid[indx],k=1) else: self._epifreqInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid[indx],self._epifreqGrid[indx],k=1) else: if self._logR: self._epifreqInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid[indx],self._epifreqGrid[indx],k=3) else: self._epifreqInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid[indx],self._epifreqGrid[indx],k=3) if interpverticalfreq: from galpy.potential import verticalfreq if not numcores is None: self._verticalfreqGrid= multi.parallel_map((lambda x: verticalfreq(self._origPot,self._rgrid[x])), list(range(len(self._rgrid))),numcores=numcores) else: self._verticalfreqGrid= numpy.array([verticalfreq(self._origPot,r) for r in self._rgrid]) if self._logR: self._verticalfreqInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid,self._verticalfreqGrid,k=3) else: self._verticalfreqInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid,self._verticalfreqGrid,k=3) return None
def like_func( params: Sequence, c: float, surfrs: list, kzs, kzerrs, termdata, termsigma, fitc, fitvoro, dblexp, addpal5, addgd1, ro: float, vo: float, addgas: bool, ): """Likelihood Function. Parameters ---------- params: list c: float surfrs: list kzs kzerrs termdata termsigma fitc fitvoro dblexp addpal5 addgd1 ro: float vo: float addgas: bool Returns ------- float """ # -------------------------------------------------------------------- from .potential import setup_potential # TODO how do not internally? # TODO use a more generic switcher so can use any stream from ..streams.pal5.pal5_util import force_pal5 from ..streams.gd1.gd1_util import force_gd1 # -------------------------------------------------------------------- # Check ranges if params[0] < 0.0 or params[0] > 1.0: return np.finfo(np.dtype(np.float64)).max elif params[1] < 0.0 or params[1] > 1.0: return np.finfo(np.dtype(np.float64)).max elif (1.0 - params[0] - params[1]) < 0.0 or (1.0 - params[0] - params[1]) > 1.0: return np.finfo(np.dtype(np.float64)).max elif params[2] < np.log(1.0 / REFR0) or params[2] > np.log(8.0 / REFR0): return np.finfo(np.dtype(np.float64)).max elif params[3] < np.log(0.05 / REFR0) or params[3] > np.log(1.0 / REFR0): return np.finfo(np.dtype(np.float64)).max elif fitvoro and (params[7] <= 150.0 / REFV0 or params[7] > 290.0 / REFV0): return np.finfo(np.dtype(np.float64)).max elif fitvoro and (params[8] <= 7.0 / REFR0 or params[8] > 9.4 / REFR0): return np.finfo(np.dtype(np.float64)).max elif fitc and (params[7 + 2 * fitvoro] <= 0.0 or params[7 + 2 * fitvoro] > 4.0): return np.finfo(np.dtype(np.float64)).max # -------------------------------------------------------------------- if fitvoro: ro, vo = REFR0 * params[8], REFV0 * params[7] # Setup potential pot = setup_potential( params, c, fitc, dblexp, ro, vo, fitvoro=fitvoro, addgas=addgas ) # Calculate model surface density at surfrs modelkzs = np.empty_like(surfrs) for ii in range(len(surfrs)): modelkzs[ii] = -potential.evaluatezforces( pot, (ro - 8.0 + surfrs[ii]) / ro, 1.1 / ro, phi=0.0 ) * bovy_conversion.force_in_2piGmsolpc2(vo, ro) out = 0.5 * np.sum((kzs - modelkzs) ** 2.0 / kzerrs ** 2.0) # Add terminal velocities vrsun = params[5] vtsun = params[6] cl_glon, cl_vterm, cl_corr, mc_glon, mc_vterm, mc_corr = termdata # Calculate terminal velocities at data glon cl_vterm_model = np.zeros_like(cl_vterm) for ii in range(len(cl_glon)): cl_vterm_model[ii] = potential.vterm(pot, cl_glon[ii]) cl_vterm_model += vrsun * np.cos(cl_glon / 180.0 * np.pi) - vtsun * np.sin( cl_glon / 180.0 * np.pi ) mc_vterm_model = np.zeros_like(mc_vterm) for ii in range(len(mc_glon)): mc_vterm_model[ii] = potential.vterm(pot, mc_glon[ii]) mc_vterm_model += vrsun * np.cos(mc_glon / 180.0 * np.pi) - vtsun * np.sin( mc_glon / 180.0 * np.pi ) cl_dvterm = (cl_vterm - cl_vterm_model * vo) / termsigma mc_dvterm = (mc_vterm - mc_vterm_model * vo) / termsigma out += 0.5 * np.sum(cl_dvterm * np.dot(cl_corr, cl_dvterm)) out += 0.5 * np.sum(mc_dvterm * np.dot(mc_corr, mc_dvterm)) # Rotation curve constraint out -= logprior_dlnvcdlnr(potential.dvcircdR(pot, 1.0, phi=0.0)) # K dwarfs, Kz out += ( 0.5 * ( -potential.evaluatezforces(pot, 1.0, 1.1 / ro, phi=0.0) * bovy_conversion.force_in_2piGmsolpc2(vo, ro) - 67.0 ) ** 2.0 / 36.0 ) # K dwarfs, visible out += 0.5 * (visible_dens(pot, ro, vo) - 55.0) ** 2.0 / 25.0 # Local density prior localdens = potential.evaluateDensities( pot, 1.0, 0.0, phi=0.0 ) * bovy_conversion.dens_in_msolpc3(vo, ro) out += 0.5 * (localdens - 0.102) ** 2.0 / 0.01 ** 2.0 # Bulge velocity dispersion out += 0.5 * (bulge_dispersion(pot, ro, vo) - 117.0) ** 2.0 / 225.0 # Mass at 60 kpc out += 0.5 * (mass60(pot, ro, vo) - 4.0) ** 2.0 / 0.7 ** 2.0 # Pal5 if addpal5: # q = 0.94 +/- 0.05 + add'l fp5 = force_pal5(pot, 23.46, ro, vo) out += 0.5 * (np.sqrt(2.0 * fp5[0] / fp5[1]) - 0.94) ** 2.0 / 0.05 ** 2.0 out += ( 0.5 * (0.94 ** 2.0 * (fp5[0] + 0.8) + 2.0 * (fp5[1] + 1.82) + 0.2) ** 2.0 / 0.6 ** 2.0 ) # GD-1 if addgd1: # q = 0.95 +/- 0.04 + add'l fg1 = force_gd1(pot, ro, vo) out += ( 0.5 * (np.sqrt(6.675 / 12.5 * fg1[0] / fg1[1]) - 0.95) ** 2.0 / 0.04 ** 2.0 ) out += ( 0.5 * (0.95 ** 2.0 * (fg1[0] + 2.51) + 6.675 / 12.5 * (fg1[1] + 1.47) + 0.05) ** 2.0 / 0.3 ** 2.0 ) # vc and ro measurements: vc=218 +/- 10 km/s, ro= 8.1 +/- 0.1 kpc out += (vo - 218.0) ** 2.0 / 200.0 + (ro - 8.1) ** 2.0 / 0.02 if np.isnan(out): return np.finfo(np.dtype(np.float64)).max else: return out
def __init__(self, RZPot=None,rgrid=(0.01,2.,101),zgrid=(0.,0.2,101),logR=False, interpPot=False,interpRforce=False,interpzforce=False, interpDens=False, interpvcirc=False, interpdvcircdr=False, interpepifreq=False,interpverticalfreq=False, use_c=False,enable_c=False,zsym=True, numcores=None): """ NAME: __init__ PURPOSE: Initialize an interpRZPotential instance INPUT: RZPot - RZPotential to be interpolated rgrid - R grid to be given to linspace zgrid - z grid to be given to linspace logR - if True, rgrid is in the log of R interpPot, interpRfoce, interpzforce, interpDens,interpvcirc, interpeopifreq, interpverticalfreq, interpdvcircdr= if True, interpolate these functions use_c= use C to speed up the calculation enable_c= enable use of C for interpolations zsym= if True (default), the potential is assumed to be symmetric around z=0 (so you can use, e.g., zgrid=(0.,1.,101)). numcores= if set to an integer, use this many cores (only used for vcirc, dvcircdR, epifreq, and verticalfreq; NOT NECESSARILY FASTER, TIME TO MAKE SURE) OUTPUT: instance HISTORY: 2010-07-21 - Written - Bovy (NYU) 2013-01-24 - Started with new implementation - Bovy (IAS) """ Potential.__init__(self,amp=1.) self.hasC= True self._origPot= RZPot self._rgrid= numpy.linspace(*rgrid) self._logR= logR if self._logR: self._rgrid= numpy.exp(self._rgrid) self._logrgrid= numpy.log(self._rgrid) self._zgrid= numpy.linspace(*zgrid) self._interpPot= interpPot self._interpRforce= interpRforce self._interpzforce= interpzforce self._interpDens= interpDens self._interpvcirc= interpvcirc self._interpdvcircdr= interpdvcircdr self._interpepifreq= interpepifreq self._interpverticalfreq= interpverticalfreq self._enable_c= enable_c*ext_loaded self._zsym= zsym if interpPot: if use_c*ext_loaded: self._potGrid, err= calc_potential_c(self._origPot,self._rgrid,self._zgrid) else: from galpy.potential import evaluatePotentials potGrid= numpy.zeros((len(self._rgrid),len(self._zgrid))) for ii in range(len(self._rgrid)): for jj in range(len(self._zgrid)): potGrid[ii,jj]= evaluatePotentials(self._rgrid[ii],self._zgrid[jj],self._origPot) self._potGrid= potGrid if self._logR: self._potInterp= interpolate.RectBivariateSpline(self._logrgrid, self._zgrid, self._potGrid, kx=3,ky=3,s=0.) else: self._potInterp= interpolate.RectBivariateSpline(self._rgrid, self._zgrid, self._potGrid, kx=3,ky=3,s=0.) if enable_c*ext_loaded: self._potGrid_splinecoeffs= calc_2dsplinecoeffs_c(self._potGrid) if interpRforce: if use_c*ext_loaded: self._rforceGrid, err= calc_potential_c(self._origPot,self._rgrid,self._zgrid,rforce=True) else: from galpy.potential import evaluateRforces rforceGrid= numpy.zeros((len(self._rgrid),len(self._zgrid))) for ii in range(len(self._rgrid)): for jj in range(len(self._zgrid)): rforceGrid[ii,jj]= evaluateRforces(self._rgrid[ii],self._zgrid[jj],self._origPot) self._rforceGrid= rforceGrid if self._logR: self._rforceInterp= interpolate.RectBivariateSpline(self._logrgrid, self._zgrid, self._rforceGrid, kx=3,ky=3,s=0.) else: self._rforceInterp= interpolate.RectBivariateSpline(self._rgrid, self._zgrid, self._rforceGrid, kx=3,ky=3,s=0.) if enable_c*ext_loaded: self._rforceGrid_splinecoeffs= calc_2dsplinecoeffs_c(self._rforceGrid) if interpzforce: if use_c*ext_loaded: self._zforceGrid, err= calc_potential_c(self._origPot,self._rgrid,self._zgrid,zforce=True) else: from galpy.potential import evaluatezforces zforceGrid= numpy.zeros((len(self._rgrid),len(self._zgrid))) for ii in range(len(self._rgrid)): for jj in range(len(self._zgrid)): zforceGrid[ii,jj]= evaluatezforces(self._rgrid[ii],self._zgrid[jj],self._origPot) self._zforceGrid= zforceGrid if self._logR: self._zforceInterp= interpolate.RectBivariateSpline(self._logrgrid, self._zgrid, self._zforceGrid, kx=3,ky=3,s=0.) else: self._zforceInterp= interpolate.RectBivariateSpline(self._rgrid, self._zgrid, self._zforceGrid, kx=3,ky=3,s=0.) if enable_c*ext_loaded: self._zforceGrid_splinecoeffs= calc_2dsplinecoeffs_c(self._zforceGrid) if interpDens: if False: raise NotImplementedError("Using C to calculate an interpolation grid for the density is not supported currently") self._densGrid, err= calc_dens_c(self._origPot,self._rgrid,self._zgrid) else: from galpy.potential import evaluateDensities densGrid= numpy.zeros((len(self._rgrid),len(self._zgrid))) for ii in range(len(self._rgrid)): for jj in range(len(self._zgrid)): densGrid[ii,jj]= evaluateDensities(self._rgrid[ii],self._zgrid[jj],self._origPot) self._densGrid= densGrid if self._logR: self._densInterp= interpolate.RectBivariateSpline(self._logrgrid, self._zgrid, numpy.log(self._densGrid+10.**-10.), kx=3,ky=3,s=0.) else: self._densInterp= interpolate.RectBivariateSpline(self._rgrid, self._zgrid, numpy.log(self._densGrid+10.**-10.), kx=3,ky=3,s=0.) if False: self._densGrid_splinecoeffs= calc_2dsplinecoeffs_c(self._densGrid) if interpvcirc: from galpy.potential import vcirc if not numcores is None: self._vcircGrid= multi.parallel_map((lambda x: vcirc(self._origPot,self._rgrid[x])), range(len(self._rgrid)),numcores=numcores) else: self._vcircGrid= numpy.array([vcirc(self._origPot,r) for r in self._rgrid]) if self._logR: self._vcircInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid,self._vcircGrid,k=3) else: self._vcircInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid,self._vcircGrid,k=3) if interpdvcircdr: from galpy.potential import dvcircdR if not numcores is None: self._dvcircdrGrid= multi.parallel_map((lambda x: dvcircdR(self._origPot,self._rgrid[x])), range(len(self._rgrid)),numcores=numcores) else: self._dvcircdrGrid= numpy.array([dvcircdR(self._origPot,r) for r in self._rgrid]) if self._logR: self._dvcircdrInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid,self._dvcircdrGrid,k=3) else: self._dvcircdrInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid,self._dvcircdrGrid,k=3) if interpepifreq: from galpy.potential import epifreq if not numcores is None: self._epifreqGrid= multi.parallel_map((lambda x: epifreq(self._origPot,self._rgrid[x])), range(len(self._rgrid)),numcores=numcores) else: self._epifreqGrid= numpy.array([epifreq(self._origPot,r) for r in self._rgrid]) indx= True-numpy.isnan(self._epifreqGrid) if numpy.sum(indx) < 4: if self._logR: self._epifreqInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid[indx],self._epifreqGrid[indx],k=1) else: self._epifreqInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid[indx],self._epifreqGrid[indx],k=1) else: if self._logR: self._epifreqInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid[indx],self._epifreqGrid[indx],k=3) else: self._epifreqInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid[indx],self._epifreqGrid[indx],k=3) if interpverticalfreq: from galpy.potential import verticalfreq if not numcores is None: self._verticalfreqGrid= multi.parallel_map((lambda x: verticalfreq(self._origPot,self._rgrid[x])), range(len(self._rgrid)),numcores=numcores) else: self._verticalfreqGrid= numpy.array([verticalfreq(self._origPot,r) for r in self._rgrid]) if self._logR: self._verticalfreqInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid,self._verticalfreqGrid,k=3) else: self._verticalfreqInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid,self._verticalfreqGrid,k=3) return None
def like_func(params,c,surfrs,kzs,kzerrs,termdata,termsigma,fitc,fitvoro, dblexp,addpal5,addgd1,ro,vo,addgas): #Check ranges if params[0] < 0. or params[0] > 1.: return numpy.finfo(numpy.dtype(numpy.float64)).max if params[1] < 0. or params[1] > 1.: return numpy.finfo(numpy.dtype(numpy.float64)).max if (1.-params[0]-params[1]) < 0. or (1.-params[0]-params[1]) > 1.: return numpy.finfo(numpy.dtype(numpy.float64)).max if params[2] < numpy.log(1./_REFR0) or params[2] > numpy.log(8./_REFR0): return numpy.finfo(numpy.dtype(numpy.float64)).max if params[3] < numpy.log(0.05/_REFR0) or params[3] > numpy.log(1./_REFR0): return numpy.finfo(numpy.dtype(numpy.float64)).max if fitvoro and (params[7] <= 150./_REFV0 or params[7] > 290./_REFV0): return numpy.finfo(numpy.dtype(numpy.float64)).max if fitvoro and (params[8] <= 7./_REFR0 or params[8] > 9.4/_REFR0): return numpy.finfo(numpy.dtype(numpy.float64)).max if fitc and (params[7+2*fitvoro] <= 0. or params[7+2*fitvoro] > 4.): return numpy.finfo(numpy.dtype(numpy.float64)).max if fitvoro: ro, vo= _REFR0*params[8], _REFV0*params[7] #Setup potential pot= setup_potential(params,c,fitc,dblexp,ro,vo,fitvoro=fitvoro, addgas=addgas) #Calculate model surface density at surfrs modelkzs= numpy.empty_like(surfrs) for ii in range(len(surfrs)): modelkzs[ii]= -potential.evaluatezforces(pot, (ro-8.+surfrs[ii])/ro, 1.1/ro, phi=0.)*bovy_conversion.force_in_2piGmsolpc2(vo,ro) out= 0.5*numpy.sum((kzs-modelkzs)**2./kzerrs**2.) #Add terminal velocities vrsun= params[5] vtsun= params[6] cl_glon, cl_vterm, cl_corr, mc_glon, mc_vterm, mc_corr= termdata #Calculate terminal velocities at data glon cl_vterm_model= numpy.zeros_like(cl_vterm) for ii in range(len(cl_glon)): cl_vterm_model[ii]= potential.vterm(pot,cl_glon[ii]) cl_vterm_model+= vrsun*numpy.cos(cl_glon/180.*numpy.pi)\ -vtsun*numpy.sin(cl_glon/180.*numpy.pi) mc_vterm_model= numpy.zeros_like(mc_vterm) for ii in range(len(mc_glon)): mc_vterm_model[ii]= potential.vterm(pot,mc_glon[ii]) mc_vterm_model+= vrsun*numpy.cos(mc_glon/180.*numpy.pi)\ -vtsun*numpy.sin(mc_glon/180.*numpy.pi) cl_dvterm= (cl_vterm-cl_vterm_model*vo)/termsigma mc_dvterm= (mc_vterm-mc_vterm_model*vo)/termsigma out+= 0.5*numpy.sum(cl_dvterm*numpy.dot(cl_corr,cl_dvterm)) out+= 0.5*numpy.sum(mc_dvterm*numpy.dot(mc_corr,mc_dvterm)) #Rotation curve constraint out-= logprior_dlnvcdlnr(potential.dvcircdR(pot,1.,phi=0.)) #K dwarfs, Kz out+= 0.5*(-potential.evaluatezforces(pot,1.,1.1/ro,phi=0.)*bovy_conversion.force_in_2piGmsolpc2(vo,ro)-67.)**2./36. #K dwarfs, visible out+= 0.5*(visible_dens(pot,ro,vo)-55.)**2./25. #Local density prior localdens= potential.evaluateDensities(pot,1.,0.,phi=0.)*bovy_conversion.dens_in_msolpc3(vo,ro) out+= 0.5*(localdens-0.102)**2./0.01**2. #Bulge velocity dispersion out+= 0.5*(bulge_dispersion(pot,ro,vo)-117.)**2./225. #Mass at 60 kpc out+= 0.5*(mass60(pot,ro,vo)-4.)**2./0.7**2. #Pal5 if addpal5: # q = 0.94 +/- 0.05 + add'l fp5= force_pal5(pot,23.46,ro,vo) out+= 0.5*(numpy.sqrt(2.*fp5[0]/fp5[1])-0.94)**2./0.05**2. out+= 0.5*(0.94**2.*(fp5[0]+0.8)+2.*(fp5[1]+1.82)+0.2)**2./0.6**2. #GD-1 if addgd1: # q = 0.95 +/- 0.04 + add'l fg1= force_gd1(pot,ro,vo) out+= 0.5*(numpy.sqrt(6.675/12.5*fg1[0]/fg1[1])-0.95)**2./0.04**2. out+= 0.5*(0.95**2.*(fg1[0]+2.51)+6.675/12.5*(fg1[1]+1.47)+0.05)**2./0.3**2. # vc and ro measurements: vc=218 +/- 10 km/s, ro= 8.1 +/- 0.1 kpc out+= (vo-218.)**2./200.+(ro-8.1)**2./0.02 if numpy.isnan(out): return numpy.finfo(numpy.dtype(numpy.float64)).max else: return out
def plot_DFsingles(options,args): raw= read_rawdata(options) #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) if options.tighten: tightbinned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe, fehmin=-1.6,fehmax=0.5,afemin=-0.05, afemax=0.55) else: tightbinned= binned #Map the bins with ndata > minndata in 1D fehs, afes= [], [] counter= 0 abindx= numpy.zeros((len(binned.fehedges)-1,len(binned.afeedges)-1), dtype='int') for ii in range(len(binned.fehedges)-1): for jj in range(len(binned.afeedges)-1): data= binned(binned.feh(ii),binned.afe(jj)) if len(data) < options.minndata: continue #print binned.feh(ii), binned.afe(jj), len(data) fehs.append(binned.feh(ii)) afes.append(binned.afe(jj)) abindx[ii,jj]= counter counter+= 1 nabundancebins= len(fehs) fehs= numpy.array(fehs) afes= numpy.array(afes) #Load each solutions sols= [] savename= args[0] initname= options.init for ii in range(nabundancebins): spl= savename.split('.') newname= '' for jj in range(len(spl)-1): newname+= spl[jj] if not jj == len(spl)-2: newname+= '.' newname+= '_%i.' % ii newname+= spl[-1] savefilename= newname #Read savefile try: savefile= open(savefilename,'rb') except IOError: print "WARNING: MISSING ABUNDANCE BIN" sols.append(None) else: sols.append(pickle.load(savefile)) savefile.close() #Load samples as well if options.mcsample: #Do the same for init spl= initname.split('.') newname= '' for jj in range(len(spl)-1): newname+= spl[jj] if not jj == len(spl)-2: newname+= '.' newname+= '_%i.' % ii newname+= spl[-1] options.init= newname mapfehs= monoAbundanceMW.fehs() mapafes= monoAbundanceMW.afes() #Now plot #Run through the pixels and gather if options.type.lower() == 'afe' or options.type.lower() == 'feh' \ or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': plotthis= [] errors= [] else: plotthis= numpy.zeros((tightbinned.npixfeh(),tightbinned.npixafe())) for ii in range(tightbinned.npixfeh()): for jj in range(tightbinned.npixafe()): data= binned(tightbinned.feh(ii),tightbinned.afe(jj)) if len(data) < options.minndata: if options.type.lower() == 'afe' or options.type.lower() == 'feh' or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': continue else: plotthis[ii,jj]= numpy.nan continue #Find abundance indx fehindx= binned.fehindx(tightbinned.feh(ii))#Map onto regular binning afeindx= binned.afeindx(tightbinned.afe(jj)) solindx= abindx[fehindx,afeindx] monoabindx= numpy.argmin((tightbinned.feh(ii)-mapfehs)**2./0.01 \ +(tightbinned.afe(jj)-mapafes)**2./0.0025) if sols[solindx] is None: if options.type.lower() == 'afe' or options.type.lower() == 'feh' or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': continue else: plotthis[ii,jj]= numpy.nan continue if options.type.lower() == 'q': s= get_potparams(sols[solindx],options,1) plotthis[ii,jj]= s[0] if not options.flatten is None: plotthis[ii,jj]/= options.flatten elif options.type.lower() == 'vc': if options.fixvo: plotthis[ii,jj]= 1. else: s= get_potparams(sols[solindx],options,1) plotthis[ii,jj]= s[1] elif options.type.lower() == 'rd': s= get_potparams(sols[solindx],options,1) plotthis[ii,jj]= numpy.exp(s[0]) elif options.type.lower() == 'zh': s= get_potparams(sols[solindx],options,1) plotthis[ii,jj]= numpy.exp(s[2-(1-(options.fixvo is None))]) elif options.type.lower() == 'ndata': plotthis[ii,jj]= len(data) elif options.type.lower() == 'hr': s= get_dfparams(sols[solindx],0,options) plotthis[ii,jj]= s[0]*_REFR0 if options.relative: thishr= monoAbundanceMW.hr(mapfehs[monoabindx],mapafes[monoabindx]) plotthis[ii,jj]/= thishr elif options.type.lower() == 'sz': s= get_dfparams(sols[solindx],0,options) plotthis[ii,jj]= s[2]*_REFV0 if options.relative: thissz= monoAbundanceMW.sigmaz(mapfehs[monoabindx],mapafes[monoabindx]) plotthis[ii,jj]/= thissz elif options.type.lower() == 'sr': s= get_dfparams(sols[solindx],0,options) plotthis[ii,jj]= s[1]*_REFV0 if options.relative: thissr= monoAbundanceMW.sigmaz(mapfehs[monoabindx],mapafes[monoabindx])*2. plotthis[ii,jj]/= thissr elif options.type.lower() == 'srsz': #Setup everything pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) aA= setup_aA(pot,options) dfparams= get_dfparams(sols[solindx],0,options,log=False) if options.dfmodel.lower() == 'qdf': #Normalize hr= dfparams[0]/ro sr= dfparams[1]/vo sz= dfparams[2]/vo hsr= dfparams[3]/ro hsz= dfparams[4]/ro #Setup qdf= quasiisothermaldf(hr,sr,sz,hsr,hsz,pot=pot, aA=aA,cutcounter=True) plotthis[ii,jj]= numpy.sqrt(qdf.sigmaR2(1.,1./_REFR0/ro, ngl=options.ngl,gl=True)\ /qdf.sigmaz2(1.,1./_REFR0/ro, ngl=options.ngl,gl=True)) elif options.type.lower() == 'outfrac': s= get_dfparams(sols[solindx],0,options) plotthis[ii,jj]= s[5] elif options.type.lower() == 'rhodm': #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if 'mwpotential' in options.potential.lower(): plotthis[ii,jj]= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. elif options.potential.lower() == 'mpdiskplhalofixbulgeflat': plotthis[ii,jj]= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. elif options.potential.lower() == 'mpdiskflplhalofixplfixbulgeflat': plotthis[ii,jj]= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. elif options.type.lower() == 'rhoo': #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) plotthis[ii,jj]= potential.evaluateDensities(1.,0.,pot)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. elif options.type.lower() == 'surfz': #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) plotthis[ii,jj]= 2.*integrate.quad((lambda zz: potential.evaluateDensities(1.,zz,pot)),0.,options.height/_REFR0/ro)[0]*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*_REFR0*ro elif options.type.lower() == 'surfzdisk': #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if 'mpdisk' in options.potential.lower() or 'mwpotential' in options.potential.lower(): plotthis[ii,jj]= 2.*integrate.quad((lambda zz: potential.evaluateDensities(1.,zz,pot[0])),0.,options.height/_REFR0/ro)[0]*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*_REFR0*ro elif options.type.lower() == 'kz': #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) plotthis[ii,jj]= numpy.fabs(potential.evaluatezforces(1.,options.height/ro/_REFR0,pot)/2./numpy.pi/4.302*_REFV0**2.*vo**2./_REFR0/ro) elif options.type.lower() == 'plhalo': #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if options.potential.lower() == 'mpdiskplhalofixbulgeflat': plotthis[ii,jj]= pot[1].alpha elif options.type.lower() == 'qhalo': #Setup potential s= get_potparams(sols[solindx],options,1) if options.potential.lower() == 'mpdiskflplhalofixplfixbulgeflat': plotthis[ii,jj]= s[4] elif options.type.lower() == 'dlnvcdlnr': #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) plotthis[ii,jj]= potential.dvcircdR(pot,1.) elif options.type.lower() == 'fd': #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if 'mwpotential' in options.potential.lower(): plotthis[ii,jj]= (pot[0].vcirc(1.))**2. elif options.type.lower() == 'fh': #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if 'mwpotential' in options.potential.lower(): plotthis[ii,jj]= (pot[1].vcirc(1.))**2. elif options.type.lower() == 'fb': #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if 'mwpotential' in options.potential.lower(): plotthis[ii,jj]= (pot[2].vcirc(1.))**2. elif options.type.lower() == 'afe' or options.type.lower() == 'feh' or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': thisplot=[tightbinned.feh(ii), tightbinned.afe(jj), len(data)] if options.subtype.lower() == 'qvc': s= get_potparams(sols[solindx],options,1) thisq= s[0] if not options.flatten is None: thisq/= options.flatten thisvc= s[1] thisplot.extend([thisq,thisvc]) elif options.subtype.lower() == 'rdzh': s= get_potparams(sols[solindx],options,1) thisrd= numpy.exp(s[0]) thiszh= numpy.exp(s[2-(1-(options.fixvo is None))]) thisplot.extend([thisrd,thiszh]) elif options.subtype.lower() == 'zhvc': s= get_potparams(sols[solindx],options,1) thiszh= numpy.exp(s[2-(1-(options.fixvo is None))]) thisvc= s[1]*_REFV0 thisplot.extend([thiszh,thisvc]) elif options.subtype.lower() == 'dlnvcdlnrvc': s= get_potparams(sols[solindx],options,1) thisslope= s[3-(1-(options.fixvo is None))]/30. thisvc= s[1]*_REFV0 thisplot.extend([thisslope,thisvc]) elif options.subtype.lower() == 'rdvc': s= get_potparams(sols[solindx],options,1) thisrd= numpy.exp(s[0]) thisvc= s[1]*_REFV0 thisplot.extend([thisrd,thisvc]) elif options.subtype.lower() == 'rdplhalo': s= get_potparams(sols[solindx],options,1) thisrd= numpy.exp(s[0]) #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if options.potential.lower() == 'mpdiskplhalofixbulgeflat': thisplhalo= pot[1].alpha thisplot.extend([thisrd,thisplhalo]) elif options.subtype.lower() == 'dlnvcdlnrplhalo': s= get_potparams(sols[solindx],options,1) thisslope= s[3-(1-(options.fixvo is None))]/30. #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if options.potential.lower() == 'mpdiskplhalofixbulgeflat': thisplhalo= pot[1].alpha thisplot.extend([thisslope,thisplhalo]) elif options.subtype.lower() == 'dlnvcdlnrzh': s= get_potparams(sols[solindx],options,1) thisslope= s[3-(1-(options.fixvo is None))]/30. thiszh= numpy.exp(s[2-(1-(options.fixvo is None))]) thisplot.extend([thisslope,thiszh]) elif options.subtype.lower() == 'vc14plhalo': s= get_potparams(sols[solindx],options,1) #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if options.potential.lower() == 'mpdiskplhalofixbulgeflat': thisplhalo= pot[1].alpha thisvc14= potential.vcirc(pot,14./_REFR0/ro)*_REFV0*vo thisplot.extend([thisplhalo,thisvc14]) elif options.subtype.lower() == 'plhalovc': s= get_potparams(sols[solindx],options,1) thisvc= s[1]*_REFV0 #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if options.potential.lower() == 'mpdiskplhalofixbulgeflat': thisplhalo= pot[1].alpha thisplot.extend([thisplhalo,thisvc]) elif options.subtype.lower() == 'zhplhalo': s= get_potparams(sols[solindx],options,1) thiszh= numpy.exp(s[2-(1-(options.fixvo is None))]) #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if options.potential.lower() == 'mpdiskplhalofixbulgeflat': thisplhalo= pot[1].alpha thisplot.extend([thiszh,thisplhalo]) elif options.subtype.lower() == 'rhodmzh': s= get_potparams(sols[solindx],options,1) thisrd= numpy.exp(s[0]) #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) thiszh= numpy.exp(s[2-(1-(options.fixvo is None))]) if 'mwpotential' in options.potential.lower(): thisrhodm= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. elif options.potential.lower() == 'mpdiskplhalofixbulgeflat': thisrhodm= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. thisplot.extend([thisrhodm,thiszh]) elif options.subtype.lower() == 'rhodmsurfz': s= get_potparams(sols[solindx],options,1) thisrd= numpy.exp(s[0]) #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) thissurfz= 2.*integrate.quad((lambda zz: potential.evaluateDensities(1.,zz,pot)),0.,options.height/_REFR0/ro)[0]*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*_REFR0*ro if 'mwpotential' in options.potential.lower(): thisrhodm= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. elif options.potential.lower() == 'mpdiskplhalofixbulgeflat': thisrhodm= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. thisplot.extend([thisrhodm,thissurfz]) elif options.subtype.lower() == 'surfzzh': s= get_potparams(sols[solindx],options,1) thisrd= numpy.exp(s[0]) #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) thiszh= numpy.exp(s[2-(1-(options.fixvo is None))]) thissurfz= 2.*integrate.quad((lambda zz: potential.evaluateDensities(1.,zz,pot)),0.,options.height/_REFR0/ro)[0]*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*_REFR0*ro thisplot.extend([thissurfz,thiszh]) elif options.subtype.lower() == 'rhoozh': s= get_potparams(sols[solindx],options,1) thisrd= numpy.exp(s[0]) #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) thiszh= numpy.exp(s[2-(1-(options.fixvo is None))]) thisrhoo= potential.evaluateDensities(1.,0.,pot)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. thisplot.extend([thisrhoo,thiszh]) elif options.subtype.lower() == 'rhodmvc': s= get_potparams(sols[solindx],options,1) thisvc= s[1]*_REFV0 #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if 'mwpotential' in options.potential.lower(): thisrhodm= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. elif options.potential.lower() == 'mpdiskplhalofixbulgeflat': thisrhodm= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. thisplot.extend([thisrhodm,thisvc]) elif options.subtype.lower() == 'rhodmrd': s= get_potparams(sols[solindx],options,1) thisrd= numpy.exp(s[0]) #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) thisrdh= numpy.exp(s[0]) if 'mwpotential' in options.potential.lower(): thisrhodm= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. elif options.potential.lower() == 'mpdiskplhalofixbulgeflat': thisrhodm= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. thisplot.extend([thisrhodm,thisrd]) elif options.subtype.lower() == 'rhodmplhalo': s= get_potparams(sols[solindx],options,1) thisrd= numpy.exp(s[0]) #Setup potential pot= setup_potential(sols[solindx],options,1) vo= get_vo(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if options.potential.lower() == 'mpdiskplhalofixbulgeflat': thisplhalo= pot[1].alpha if 'mwpotential' in options.potential.lower(): thisrhodm= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. elif options.potential.lower() == 'mpdiskplhalofixbulgeflat': thisrhodm= pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. thisplot.extend([thisrhodm,thisplhalo]) plotthis.append(thisplot) #Set up plot if options.type.lower() == 'q': if not options.flatten is None: vmin, vmax= 0.9, 1.1 zlabel=r'$\mathrm{flattening}\ q / %.1f$' % options.flatten elif 'real' in options.outfilename.lower(): vmin, vmax= 0.9, 1.1 medianq= numpy.median(plotthis[numpy.isfinite(plotthis)]) plotthis/= medianq zlabel=r'$\mathrm{flattening}\ q / %.2f$' % medianq else: vmin, vmax= 0.5, 1.2 zlabel=r'$\mathrm{flattening}\ q$' elif options.type.lower() == 'vc': vmin, vmax= 0.95, 1.05 zlabel=r'$V_c / %i\ \mathrm{km\,s}^{-1}$' % int(_REFV0) if 'real' in options.outfilename.lower(): medianvc= numpy.median(plotthis[numpy.isfinite(plotthis)]) plotthis/= medianvc zlabel=r'$V_c / %i\ \mathrm{km\,s}^{-1}$' % int(_REFV0*medianvc) elif options.type.lower() == 'rhodm': vmin, vmax= 0.00, 0.02 zlabel=r'$\rho_{\mathrm{DM}}(R_0,0)\ [M_\odot\,\mathrm{pc}^{-3}]$' elif options.type.lower() == 'rhoo': vmin, vmax= 0.00, 0.2 zlabel=r'$\rho(R_0,0)\ [M_\odot\,\mathrm{pc}^{-3}]$' elif options.type.lower() == 'surfz': vmin, vmax= 50.,120. zlabel=r'$\Sigma(%.1f\,\mathrm{kpc};R_0)\ [M_\odot\,\mathrm{pc}^{-2}]$' % options.height elif options.type.lower() == 'surfzdisk': vmin, vmax= 20.,90. zlabel=r'$\Sigma_{\mathrm{disk}}(%.1f\,\mathrm{kpc};R_0)\ [M_\odot\,\mathrm{pc}^{-2}]$' % options.height elif options.type.lower() == 'kz': vmin, vmax= 50.,120. zlabel=r'$K_Z(%.1f\,\mathrm{kpc};R_0)\ [M_\odot\,\mathrm{pc}^{-2}]$' % options.height elif options.type.lower() == 'dlnvcdlnr': vmin, vmax= -0.3,0.2 zlabel=r'$\frac{\mathrm{d} \ln V_c}{\mathrm{d} \ln R}$' elif options.type.lower() == 'fd': vmin, vmax= 0.00, 1. zlabel=r'$V_{c,\mathrm{disk}} / V_c\,(R_0)$' elif options.type.lower() == 'fh': vmin, vmax= 0.00, 1. zlabel=r'$V_{c,\mathrm{halo}} / V_c\,(R_0)$' elif options.type.lower() == 'fb': vmin, vmax= 0.00, .1 zlabel=r'$V_{c,\mathrm{halo}} / V_c\,(R_0)$' elif options.type.lower() == 'rd': vmin, vmax= 0.2, 0.6 zlabel=r'$R_d / R_0$' elif options.type.lower() == 'zh': vmin, vmax= 0.0125, 0.075 zlabel=r'$z_h / R_0$' elif options.type.lower() == 'plhalo': vmin, vmax= 0.0, 2. zlabel=r'$\alpha\ \mathrm{in}\ \rho_{\mathrm{halo}} \propto 1/r^\alpha$' elif options.type.lower() == 'qhalo': vmin, vmax= 0.4, 1.15 zlabel=r'$q_\Phi^{\mathrm{halo}}$' elif options.type.lower() == 'ndata': vmin, vmax= numpy.nanmin(plotthis), numpy.nanmax(plotthis) zlabel=r'$N_\mathrm{data}$' elif options.type == 'hr': if options.relative: vmin, vmax= 0.8, 1.2 zlabel=r'$\mathrm{input / output\ radial\ scale\ length}$' else: vmin, vmax= 1.35,4.5 zlabel=r'$\mathrm{model\ radial\ scale\ length\ [kpc]}$' elif options.type == 'sz': if options.relative: vmin, vmax= 0.8, 1.2 zlabel= r'$\mathrm{input / output\ model}\ \sigma_z$' else: vmin, vmax= 10.,60. zlabel= r'$\mathrm{model}\ \sigma_z\ [\mathrm{km\ s}^{-1}]$' elif options.type == 'sr': if options.relative: vmin, vmax= 0.8, 1.2 zlabel= r'$\mathrm{input/output\ model}\ \sigma_R$' else: vmin, vmax= 10.,60. zlabel= r'$\mathrm{model}\ \sigma_R\ [\mathrm{km\ s}^{-1}]$' elif options.type == 'srsz': vmin, vmax= 0.5,2. zlabel= r'$\sigma_R/\sigma_z\ (R_0,1\,\mathrm{kpc})$' elif options.type == 'outfrac': vmin, vmax= 0., 1. zlabel= r'$\mathrm{relative\ number\ of\ outliers}$' elif options.type == 'afe': vmin, vmax= 0.0,.5 zlabel=r'$[\alpha/\mathrm{Fe}]$' elif options.type == 'feh': vmin, vmax= -1.6,0.4 zlabel=r'$[\mathrm{Fe/H}]$' elif options.type == 'fehafe': vmin, vmax= -.7,.7 zlabel=r'$[\mathrm{Fe/H}]-[\mathrm{Fe/H}]_{1/2}([\alpha/\mathrm{Fe}])$' elif options.type == 'afefeh': vmin, vmax= -.15,.15 zlabel=r'$[\alpha/\mathrm{Fe}]-[\alpha/\mathrm{Fe}]_{1/2}([\mathrm{Fe/H}])$' if options.tighten: xrange=[-1.6,0.5] yrange=[-0.05,0.55] else: xrange=[-2.,0.5] yrange=[-0.2,0.6] #Now plot if options.type.lower() == 'afe' or options.type.lower() == 'feh' \ or options.type.lower() == 'fehafe': #Gather everything afe, feh, ndata, x, y= [], [], [], [], [] for ii in range(len(plotthis)): afe.append(plotthis[ii][1]) feh.append(plotthis[ii][0]) ndata.append(plotthis[ii][2]) x.append(plotthis[ii][3]) y.append(plotthis[ii][4]) afe= numpy.array(afe) feh= numpy.array(feh) ndata= numpy.array(ndata) x= numpy.array(x) y= numpy.array(y) #Process ndata ndata= ndata**.5 ndata= ndata/numpy.median(ndata)*35. if options.type.lower() == 'afe': plotc= afe elif options.type.lower() == 'feh': plotc= feh elif options.type.lower() == 'afefeh': #Go through the bins to determine whether feh is high or low for this alpha plotc= numpy.zeros(len(afe)) for ii in range(tightbinned.npixfeh()): fehbin= ii data= tightbinned.data[(tightbinned.data.feh > tightbinned.fehedges[fehbin])\ *(tightbinned.data.feh <= tightbinned.fehedges[fehbin+1])] medianafe= numpy.median(data.afe) for jj in range(len(afe)): if feh[jj] == tightbinned.feh(ii): plotc[jj]= afe[jj]-medianafe else: #Go through the bins to determine whether feh is high or low for this alpha plotc= numpy.zeros(len(feh)) for ii in range(tightbinned.npixafe()): afebin= ii data= tightbinned.data[(tightbinned.data.afe > tightbinned.afeedges[afebin])\ *(tightbinned.data.afe <= tightbinned.afeedges[afebin+1])] medianfeh= numpy.median(data.feh) for jj in range(len(feh)): if afe[jj] == tightbinned.afe(ii): plotc[jj]= feh[jj]-medianfeh onedhists=False if options.subtype.lower() == 'qvc': if not options.flatten is None: xrange= [0.9,1.1] xlabel=r'$\mathrm{flattening}\ q / %.1f$' % options.flatten elif 'real' in options.outfilename.lower(): xrange= [0.9,1.1] medianq= numpy.median(x[numpy.isfinite(x)]) x/= medianq xlabel=r'$\mathrm{flattening}\ q / %.2f$' % medianq else: xrange= [0.5, 1.2] xlabel=r'$\mathrm{flattening}\ q$' yrange= [0.95, 1.05] ylabel=r'$V_c / %i\ \mathrm{km\,s}^{-1}$' % int(_REFV0) if 'real' in options.outfilename.lower(): medianvc= numpy.median(y[numpy.isfinite(y)]) y/= medianvc ylabel=r'$V_c / %i\ \mathrm{km\,s}^{-1}$' % int(_REFV0*medianvc) elif options.subtype.lower() == 'rdzh': yrange= [0.0125,0.1] xrange= [0.2,0.8] xlabel=r'$R_d / R_0$' ylabel=r'$z_h / R_0$' elif options.subtype.lower() == 'rdplhalo': yrange= [0.,2.] xrange= [0.2,0.8] xlabel=r'$R_d / R_0$' ylabel=r'$\alpha\ \mathrm{in}\ \rho_{\mathrm{halo}} \propto 1/r^\alpha$' elif options.subtype.lower() == 'vc14plhalo': yrange= [210.,280.] xrange= [0.,2.] xlabel=r'$\alpha\ \mathrm{in}\ \rho_{\mathrm{halo}} \propto 1/r^\alpha$' ylabel=r'$V_c (R=14\,\mathrm{kpc})\ [\mathrm{km\,s}^{-1}$]' elif options.subtype.lower() == 'zhplhalo': yrange= [0.,2.] xrange= [0.0125,0.1] ylabel=r'$\alpha\ \mathrm{in}\ \rho_{\mathrm{halo}} \propto 1/r^\alpha$' xlabel=r'$z_h / R_0$' elif options.subtype.lower() == 'rhodmplhalo': xrange= [0.,0.02] yrange= [0.,2.] ylabel=r'$\alpha\ \mathrm{in}\ \rho_{\mathrm{halo}} \propto 1/r^\alpha$' xlabel=r'$\rho_{\mathrm{DM}}(R_0,0)\ [M_\odot\,\mathrm{pc}^{-3}]$' elif options.subtype.lower() == 'rhodmzh': yrange= [0.0125,0.1] xrange= [0.,0.02] ylabel=r'$z_h / R_0$' xlabel=r'$\rho_{\mathrm{DM}}(R_0,0)\ [M_\odot\,\mathrm{pc}^{-3}]$' elif options.subtype.lower() == 'rhoozh': yrange= [0.0125,0.1] xrange= [0.,0.2] ylabel=r'$z_h / R_0$' xlabel=r'$\rho(R_0,0)\ [M_\odot\,\mathrm{pc}^{-3}]$' elif options.subtype.lower() == 'surfzzh': yrange= [0.0125,0.1] xrange= [50.+20.*(options.height-1.1),120.+20.*(options.height-1.1)] ylabel=r'$z_h / R_0$' xlabel=r'$\Sigma(%.1f\,\mathrm{kpc};R_0)\ [M_\odot\,\mathrm{pc}^{-2}]$' % options.height elif options.subtype.lower() == 'rhodmsurfz': yrange= [50.+20.*(options.height-1.1),120.+20.*(options.height-1.1)] xrange= [0.,0.02] ylabel=r'$\Sigma(%.1f\,\mathrm{kpc};R_0)\ [M_\odot\,\mathrm{pc}^{-2}]$' % options.height xlabel=r'$\rho_{\mathrm{DM}}(R_0,0)\ [M_\odot\,\mathrm{pc}^{-3}]$' elif options.subtype.lower() == 'rhodmrd': yrange= [0.2,0.8] xrange= [0.,0.02] ylabel=r'$R_d / R_0$' xlabel=r'$\rho_{\mathrm{DM}}(R_0,0)\ [M_\odot\,\mathrm{pc}^{-3}]$' elif options.subtype.lower() == 'rdvc': yrange= [210.,250.] xrange= [0.2,0.8] xlabel=r'$R_d / R_0$' ylabel=r'$V_c\ [\mathrm{km\,s}^{-1}]$' elif options.subtype.lower() == 'zhvc': yrange= [210.,250.] xrange= [0.0125,0.1] xlabel=r'$z_h / R_0$' ylabel=r'$V_c\ [\mathrm{km\,s}^{-1}]$' elif options.subtype.lower() == 'dlnvcdlnrvc': yrange= [210.,250.] xrange= [-0.2,0.07] xlabel=r'$\mathrm{d}\ln V_c / \mathrm{d}\ln R\, (R_0)$' ylabel=r'$V_c\ [\mathrm{km\,s}^{-1}]$' onedhists=True elif options.subtype.lower() == 'dlnvcdlnrplhalo': yrange= [0.,2.] ylabel=r'$\alpha\ \mathrm{in}\ \rho_{\mathrm{halo}} \propto 1/r^\alpha$' xrange= [-0.2,0.07] xlabel=r'$\mathrm{d}\ln V_c / \mathrm{d}\ln R\, (R_0)$' elif options.subtype.lower() == 'dlnvcdlnrzh': yrange= [0.0125,0.1] ylabel=r'$z_h / R_0$' xrange= [-0.2,0.07] xlabel=r'$\mathrm{d}\ln V_c / \mathrm{d}\ln R\, (R_0)$' elif options.subtype.lower() == 'rhodmvc': yrange= [210.,250.] xrange= [0.,0.02] ylabel=r'$V_c\ [\mathrm{km\,s}^{-1}]$' xlabel=r'$\rho_{\mathrm{DM}}(R_0,0)\ [M_\odot\,\mathrm{pc}^{-3}]$' elif options.subtype.lower() == 'plhalovc': yrange= [210.,250.] xrange= [0.,2.] xlabel=r'$\alpha\ \mathrm{in}\ \rho_{\mathrm{halo}} \propto 1/r^\alpha$' ylabel=r'$V_c\ [\mathrm{km\,s}^{-1}$]' bovy_plot.bovy_print(fig_height=3.87,fig_width=5.) ax= bovy_plot.bovy_plot(x,y, s=ndata,c=plotc, cmap='jet', xlabel=xlabel,ylabel=ylabel, clabel=zlabel, xrange=xrange,yrange=yrange, vmin=vmin,vmax=vmax, scatter=True,edgecolors='none', colorbar=True-onedhists, onedhists=onedhists, onedhistxnormed=onedhists, onedhistynormed=onedhists, bins=15) if onedhists: axS, axx, axy= ax if options.subtype.lower() == 'dlnvcdlnrvc': #Plot prior on one-d axes sb= numpy.linspace(-0.2,0.0399,1001) fsb= numpy.exp(numpy.log((0.04-sb)/0.04)-(0.04-sb)/0.04) fsb/= numpy.sum(fsb)*(sb[1]-sb[0]) axx.plot(sb,fsb,'-',color='0.65') tvc= numpy.linspace(150.,350.,1001) fvc= numpy.exp(-(tvc-225.)**2./2./15.**2.) fvc/= numpy.sum(fvc)*(tvc[1]-tvc[0]) axy.plot(fvc,tvc,'-',color='0.65') else: bovy_plot.bovy_print() bovy_plot.bovy_dens2d(plotthis.T,origin='lower',cmap='jet', interpolation='nearest', xlabel=r'$[\mathrm{Fe/H}]$', ylabel=r'$[\alpha/\mathrm{Fe}]$', zlabel=zlabel, xrange=xrange,yrange=yrange, vmin=vmin,vmax=vmax, contours=False, colorbar=True,shrink=0.78) if options.type.lower() == 'q' or options.type.lower() == 'vc' \ or options.relative or options.type.lower() == 'rd' \ or options.type.lower() == 'fd' \ or options.type.lower() == 'fh' \ or options.type.lower() == 'fb' \ or options.type.lower() == 'plhalo' \ or options.type.lower() == 'surfz' \ or options.type.lower() == 'surfzdisk' \ or options.type.lower() == 'rhoo' \ or options.type.lower() == 'qhalo' \ or options.type.lower() == 'kz': bovy_plot.bovy_text(r'$\mathrm{median} = %.2f \pm %.2f$' % (numpy.median(plotthis[numpy.isfinite(plotthis)]), 1.4826*numpy.median(numpy.fabs(plotthis[numpy.isfinite(plotthis)]-numpy.median(plotthis[numpy.isfinite(plotthis)])))), bottom_left=True,size=14.) if options.type.lower() == 'zh' or options.type.lower() == 'rhodm': bovy_plot.bovy_text(r'$\mathrm{median} = %.4f \pm %.4f$' % (numpy.median(plotthis[numpy.isfinite(plotthis)]), 1.4826*numpy.median(numpy.fabs(plotthis[numpy.isfinite(plotthis)]-numpy.median(plotthis[numpy.isfinite(plotthis)])))), bottom_left=True,size=14.) bovy_plot.bovy_end_print(options.outfilename) return None
def like_func(params,surfrs,kzs,kzerrs, termdata,options): #Check ranges if params[0] < 0. or params[0] > 1.: return numpy.finfo(numpy.dtype(numpy.float64)).max if params[1] < 0. or params[1] > 1.: return numpy.finfo(numpy.dtype(numpy.float64)).max if options.twodisks and (params[2] < 0. or params[2] > 1.): return numpy.finfo(numpy.dtype(numpy.float64)).max if (1.-params[0]-params[1]-options.twodisks*params[2]) < 0. or (1.-params[0]-params[1]-options.twodisks*params[2]) > 1.: return numpy.finfo(numpy.dtype(numpy.float64)).max if params[2+options.twodisks] < numpy.log(1./_REFR0) or params[2+options.twodisks] > numpy.log(8./_REFR0): return numpy.finfo(numpy.dtype(numpy.float64)).max if params[3+options.twodisks] < numpy.log(0.05/_REFR0) or params[3+options.twodisks] > numpy.log(1./_REFR0): return numpy.finfo(numpy.dtype(numpy.float64)).max if options.twodisks: if params[5] < numpy.log(1./_REFR0) or params[5] > numpy.log(8./_REFR0): return numpy.finfo(numpy.dtype(numpy.float64)).max if params[6] < numpy.log(0.05/_REFR0) or params[6] > numpy.log(1./_REFR0): return numpy.finfo(numpy.dtype(numpy.float64)).max #Setup potential if options.twodisks: pot= [potential.PowerSphericalPotentialwCutoff(normalize=1.-params[0]-params[1]-params[2], alpha=1.8,rc=1.9/_REFR0), potential.MiyamotoNagaiPotential(normalize=params[0], a=numpy.exp(params[3]), b=numpy.exp(params[4])), potential.MiyamotoNagaiPotential(normalize=params[1], a=numpy.exp(params[5]), b=numpy.exp(params[6])), potential.NFWPotential(normalize=params[2], a=numpy.exp(params[7]))] else: pot= [potential.PowerSphericalPotentialwCutoff(normalize=1.-params[0]-params[1], alpha=1.8,rc=1.9/_REFR0), potential.MiyamotoNagaiPotential(normalize=params[0], a=numpy.exp(params[2]), b=numpy.exp(params[3])), potential.NFWPotential(normalize=params[1],a=numpy.exp(params[4]))] #Calculate model surface density at surfrs modelkzs= numpy.empty_like(surfrs) for ii in range(len(surfrs)): modelkzs[ii]= -potential.evaluatezforces(surfrs[ii]/_REFR0,1.1/_REFR0, pot)*bovy_conversion.force_in_2piGmsolpc2(_REFV0,_REFR0) out= 0.5*numpy.sum((kzs-modelkzs)**2./kzerrs**2.) #Add terminal velocities vrsun= params[5+3*options.twodisks] vtsun= params[6+3*options.twodisks] cl_glon, cl_vterm, cl_corr, mc_glon, mc_vterm, mc_corr= termdata #Calculate terminal velocities at data glon cl_vterm_model= numpy.zeros_like(cl_vterm) for ii in range(len(cl_glon)): cl_vterm_model[ii]= potential.vterm(pot,cl_glon[ii]) cl_vterm_model+= vrsun*numpy.cos(cl_glon/180.*numpy.pi)\ -vtsun*numpy.sin(cl_glon/180.*numpy.pi) mc_vterm_model= numpy.zeros_like(mc_vterm) for ii in range(len(mc_glon)): mc_vterm_model[ii]= potential.vterm(pot,mc_glon[ii]) mc_vterm_model+= vrsun*numpy.cos(mc_glon/180.*numpy.pi)\ -vtsun*numpy.sin(mc_glon/180.*numpy.pi) cl_dvterm= (cl_vterm-cl_vterm_model)/options.termsigma*_REFV0 mc_dvterm= (mc_vterm-mc_vterm_model)/options.termsigma*_REFV0 out+= 0.5*numpy.sum(cl_dvterm*numpy.dot(cl_corr,cl_dvterm)) out+= 0.5*numpy.sum(mc_dvterm*numpy.dot(mc_corr,mc_dvterm)) #Rotation curve constraint out-= logprior_dlnvcdlnr(potential.dvcircdR(pot,1.)) #K dwarfs, Kz out+= 0.5*(-potential.evaluatezforces(1.,1.1/_REFR0,pot)*bovy_conversion.force_in_2piGmsolpc2(_REFV0,_REFR0)-67.)**2./36. #K dwarfs, visible out+= 0.5*(visible_dens(pot,options)-55.)**2./25. #Local density prior localdens= potential.evaluateDensities(1.,0.,pot)*bovy_conversion.dens_in_msolpc3(_REFV0,_REFR0) out+= 0.5*(localdens-0.102)**2./0.01**2. #Bulge velocity dispersion out+= 0.5*(bulge_dispersion(pot)-117.)**2./225. #Mass at 60 kpc out+= 0.5*(mass60(pot,options)-4.)**2./0.7**2. #Concentration prior? return out
def writeTable(pot,params,tablename,options,fzrd): outfile= open(tablename,'w') delimiter= ' & ' #First list the explicit parameters printline= '$R_0\,(\kpc)$%s$8$%sfixed\\\\\n' % (delimiter,delimiter) outfile.write(printline) printline= '$v_c(R_0)\,(\kms)$%s$220$%sfixed\\\\\n' % (delimiter,delimiter) outfile.write(printline) if options.twodisks: printline= '$f_{b}$%s$%.2f$%s\ldots\\\\\n' % (delimiter,1.-params[0]-params[1]-params[2],delimiter) outfile.write(printline) printline= '$f_{d,1}$%s$%.2f$%s\ldots\\\\\n' % (delimiter,params[0],delimiter) outfile.write(printline) printline= '$f_{d,2}$%s$%.2f$%s\ldots\\\\\n' % (delimiter,params[1],delimiter) outfile.write(printline) printline= '$f_{h}$%s$%.2f$%s\ldots\\\\\n' % (delimiter,params[2],delimiter) outfile.write(printline) else: printline= '$f_{b}$%s$%.2f$%s\ldots\\\\\n' % (delimiter,1.-params[0]-params[1],delimiter) outfile.write(printline) printline= '$f_{d}$%s%.2f%s\ldots\\\\\n' % (delimiter,params[0],delimiter) outfile.write(printline) printline= '$f_{h}$%s$%.2f$%s\ldots\\\\\n' % (delimiter,params[1],delimiter) outfile.write(printline) #Bulge power-law and rc printline= '$\mathrm{Bulge\ power}$%s$-1.8$%sfixed\\\\\n' % (delimiter,delimiter) outfile.write(printline) printline= '$\mathrm{Bulge\ cut}\,(\kpc)$%s$1.9$%sfixed\\\\\n' % (delimiter,delimiter) outfile.write(printline) #Disk scale length and height printline= '$a\,(\kpc)$%s$%.1f$%s\ldots\\\\\n' % (delimiter,numpy.exp(params[2+options.twodisks])*_REFR0,delimiter) outfile.write(printline) printline= '$b\,(\pc)$%s$%.0f$%s\ldots\\\\\n' % (delimiter,1000.*numpy.exp(params[3+options.twodisks])*_REFR0,delimiter) outfile.write(printline) printline= '$\mathrm{Halo}\ r_s\,(\kpc)$%s$%.0f$%s\ldots\\\\\n' % (delimiter,numpy.exp(params[4+options.twodisks])*_REFR0,delimiter) outfile.write(printline) outfile.write('%s%s\\\\\n' % (delimiter,delimiter)) #Now the constraints printline= '$\sigma_b\,(\kms)$%s$%.0f$%s$117\pm15$\\\\\n' % (delimiter,bulge_dispersion(pot),delimiter) outfile.write(printline) printline= '$F_Z(R_0,1.1\kpc)\,(2\pi G\,M_\odot\pc^{-2})$%s$%.0f$%s$67\pm6$\\\\\n' % (delimiter,-potential.evaluatezforces(1.,1.1/_REFR0,pot)*bovy_conversion.force_in_2piGmsolpc2(_REFV0,_REFR0),delimiter) outfile.write(printline) printline= '$\Sigma_{\mathrm{vis}}(R_0)\,(M_\odot\pc^{-2})$%s$%.0f$%s$55\pm5$\\\\\n' % (delimiter,visible_dens(pot,options),delimiter) outfile.write(printline) printline= '$F_Z\ \mathrm{scale\ length}\,(\kpc)$%s%.1f%s$2.7\pm0.1$\\\\\n' % (delimiter,fzrd*_REFR0,delimiter) outfile.write(printline) printline= '$\\rho(R_0,z=0)\,(M_\odot\pc^{-3})$%s$%.2f$%s$0.10\pm0.01$\\\\\n' % (delimiter,potential.evaluateDensities(1.,0.,pot)*bovy_conversion.dens_in_msolpc3(_REFV0,_REFR0),delimiter) outfile.write(printline) printline= '$(\dd \ln v_c/\dd \ln R)|_{R_0}$%s$%.2f$%s$-0.2\ \mathrm{to}\ 0$\\\\\n' % (delimiter,potential.dvcircdR(pot,1.),delimiter) outfile.write(printline) printline= '$M(r<60\kpc)\,(10^{11}\,M_\odot)$%s$%.1f$%s$4.0\pm0.7$\\\\\n' % (delimiter,mass60(pot,options),delimiter) outfile.write(printline) outfile.write('%s%s\\\\\n' % (delimiter,delimiter)) #Now some derived properties printline= '$M_b\,(10^{10}\,M_\odot)$%s$%.1f$%s\ldots\\\\\n' % (delimiter,pot[0].mass(10.)*bovy_conversion.mass_in_1010msol(_REFV0,_REFR0),delimiter) outfile.write(printline) if options.twodisks: printline= '$M_d\,(10^{10}\,M_\odot)$%s$%.1f$%s\ldots\\\\\n' % (delimiter,(pot[1]._amp+pot[2]._amp)*bovy_conversion.mass_in_1010msol(_REFV0,_REFR0),delimiter) else: printline= '$M_d\,(10^{10}\,M_\odot)$%s$%.1f$%s\ldots\\\\\n' % (delimiter,pot[1]._amp*bovy_conversion.mass_in_1010msol(_REFV0,_REFR0),delimiter) outfile.write(printline) krs= numpy.linspace(4./_REFR0,9./_REFR0,101) disksurf= numpy.array([visible_dens(pot,options,r=kr) for kr in krs]) p= numpy.polyfit(krs,numpy.log(disksurf),1) rd= -1./p[0]*_REFR0 printline= '$R_{d}\,(\kpc)$%s$%.1f$%s\ldots\\\\\n' % (delimiter,rd,delimiter) outfile.write(printline) rvir= pot[2+options.twodisks].rvir(_REFV0,_REFR0,wrtcrit=True,overdens=96.7) printline= '$\\rho_{\mathrm{DM}}(R_0)\,(M_\odot\pc^{-3})$%s$%.3f$%s\\\\\n' % (delimiter,potential.evaluateDensities(1.,0.,pot[2+options.twodisks])*bovy_conversion.dens_in_msolpc3(_REFV0,_REFR0),delimiter) outfile.write(printline) printline= '$M_{\mathrm{vir}}\,(10^{12}\,M_\odot)$%s$%.1f$%s\ldots\\\\\n' % (delimiter,pot[2+options.twodisks].mass(rvir)*bovy_conversion.mass_in_1010msol(_REFV0,_REFR0)/100.,delimiter) outfile.write(printline) printline= '$r_{\mathrm{vir}}\,(\kpc)$%s$%.0f$%s\ldots\\\\\n' % (delimiter,rvir*_REFR0,delimiter) outfile.write(printline) printline= '$\mathrm{Concentration}$%s$%.1f$%s\ldots\\\\\n' % (delimiter,rvir/pot[2+options.twodisks].a,delimiter) outfile.write(printline) printline= '$v_{\mathrm{esc}}(R_0)\,(\kms)$%s$%.0f$%s\ldots\n' % (delimiter,potential.vesc(pot,1.)*_REFV0,delimiter) outfile.write(printline) #printline= '$r_{\mathrm{vir}}\,(\kpc)$%s$%.0f$%s\ldots\\\\\n' % (delimiter,delimiter) #outfile.write(printline) outfile.write('\\enddata\n') pass
def calcDFResults(options,args,boot=True,nomedian=False): if len(args) == 2 and options.sample == 'gk': toptions= copy.copy(options) toptions.sample= 'g' toptions.select= 'all' outg= calcDFResults(toptions,[args[0]],boot=boot,nomedian=True) toptions.sample= 'k' toptions.select= 'program' outk= calcDFResults(toptions,[args[1]],boot=boot,nomedian=True) #Combine out= {} for k in outg.keys(): valg= outg[k] valk= outk[k] val= numpy.zeros(len(valg)+len(valk)) val[0:len(valg)]= valg val[len(valg):len(valg)+len(valk)]= valk out[k]= val if nomedian: return out else: return add_median(out,boot=boot) raw= read_rawdata(options) #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) tightbinned= binned #Map the bins with ndata > minndata in 1D fehs, afes= [], [] counter= 0 abindx= numpy.zeros((len(binned.fehedges)-1,len(binned.afeedges)-1), dtype='int') for ii in range(len(binned.fehedges)-1): for jj in range(len(binned.afeedges)-1): data= binned(binned.feh(ii),binned.afe(jj)) if len(data) < options.minndata: continue #print binned.feh(ii), binned.afe(jj), len(data) fehs.append(binned.feh(ii)) afes.append(binned.afe(jj)) abindx[ii,jj]= counter counter+= 1 nabundancebins= len(fehs) fehs= numpy.array(fehs) afes= numpy.array(afes) #Load each of the solutions sols= [] chi2s= [] savename= args[0] initname= options.init for ii in range(nabundancebins): spl= savename.split('.') newname= '' for jj in range(len(spl)-1): newname+= spl[jj] if not jj == len(spl)-2: newname+= '.' newname+= '_%i.' % ii newname+= spl[-1] savefilename= newname #Read savefile try: savefile= open(savefilename,'rb') except IOError: print "WARNING: MISSING ABUNDANCE BIN" sols.append(None) chi2s.append(None) else: sols.append(pickle.load(savefile)) chi2s.append(pickle.load(savefile)) savefile.close() #Load samples as well if options.mcsample: #Do the same for init spl= initname.split('.') newname= '' for jj in range(len(spl)-1): newname+= spl[jj] if not jj == len(spl)-2: newname+= '.' newname+= '_%i.' % ii newname+= spl[-1] options.init= newname mapfehs= monoAbundanceMW.fehs() mapafes= monoAbundanceMW.afes() #Now plot #Run through the pixels and gather fehs= [] afes= [] ndatas= [] zmedians= [] #Basic parameters hrs= [] srs= [] szs= [] hsrs= [] hszs= [] outfracs= [] rds= [] rdexps= [] vcs= [] zhs= [] zhexps= [] dlnvcdlnrs= [] plhalos= [] rorss= [] dvts= [] #derived parameters surfzs= [] surfz800s= [] surfzdisks= [] massdisks= [] rhoos= [] rhooalts= [] rhodms= [] vcdvcros= [] vcdvcs= [] vescs= [] mloglikemins= [] for ii in range(tightbinned.npixfeh()): for jj in range(tightbinned.npixafe()): data= binned(tightbinned.feh(ii),tightbinned.afe(jj)) if len(data) < options.minndata: continue #Find abundance indx fehindx= binned.fehindx(tightbinned.feh(ii))#Map onto regular binning afeindx= binned.afeindx(tightbinned.afe(jj)) solindx= abindx[fehindx,afeindx] monoabindx= numpy.argmin((tightbinned.feh(ii)-mapfehs)**2./0.01 \ +(tightbinned.afe(jj)-mapafes)**2./0.0025) if sols[solindx] is None: continue try: pot= setup_potential(sols[solindx],options,1,interpDens=True, interpdvcircdr=True,returnrawpot=True) except RuntimeError: print "A bin has an unphysical potential ..." continue # if 'dpdisk' in options.potential.lower(): # try: # rawpot= setup_potential(sols[solindx],options,1, # returnrawpot=True) # except RuntimeError: # print "A bin has an unphysical potential ..." # continue fehs.append(tightbinned.feh(ii)) afes.append(tightbinned.afe(jj)) zmedians.append(numpy.median(numpy.fabs(data.zc+_ZSUN))) #vc s= get_potparams(sols[solindx],options,1) ro= get_ro(sols[solindx],options) if options.fixvo: vcs.append(options.fixvo*_REFV0) else: vcs.append(s[1]*_REFV0) #rd rds.append(numpy.exp(s[0])) #zh zhs.append(numpy.exp(s[2-(1-(options.fixvo is None))])) #rdexp & zhexp if options.sample == 'g': tz= 1.1/_REFR0/ro elif options.sample == 'k': tz= 0.84/_REFR0/ro if 'mpdisk' in options.potential.lower() or 'mwpotential' in options.potential.lower(): mp= potential.MiyamotoNagaiPotential(a=rds[-1],b=zhs[-1]) #rdexp f= mp.dens(1.,0.125) dr= 10.**-3. df= (mp.dens(1.+dr/2.,0.125)-mp.dens(1.-dr/2.,0.125))/dr rdexps.append(-f/df) #zhexp f= mp.dens(1.,tz) dz= 10.**-3. df= (mp.dens(1.,tz+dz/2.)-mp.dens(1.,tz-dz/2.))/dz zhexps.append(-f/df) elif 'dpdisk' in options.potential.lower(): rdexps.append(numpy.exp(s[0])) zhexps.append(numpy.exp(s[2-(1-(options.fixvo is None))])) #ndata ndatas.append(len(data)) #hr dfparams= get_dfparams(sols[solindx],0,options) if options.relative: thishr= monoAbundanceMW.hr(mapfehs[monoabindx],mapafes[monoabindx]) hrs.append(dfparams[0]*_REFR0/thishr) else: hrs.append(dfparams[0]*_REFR0) #sz if options.relative: thissz= monoAbundanceMW.sigmaz(mapfehs[monoabindx],mapafes[monoabindx]) szs.append(dfparams[2]*_REFV0/thissz) else: szs.append(dfparams[2]*_REFV0) #sr if options.relative: thissr= monoAbundanceMW.sigmaz(mapfehs[monoabindx],mapafes[monoabindx])*2.#BOVY: UPDATE srs.append(dfparams[1]*_REFV0/thissr) else: srs.append(dfparams[1]*_REFV0) #hsr hsrs.append(dfparams[3]*_REFR0) #hsz hszs.append(dfparams[4]*_REFR0) #outfrac outfracs.append(dfparams[5]) #rhodm #Setup potential vo= get_vo(sols[solindx],options,1) if 'mwpotential' in options.potential.lower(): rhodms.append(pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3.) elif options.potential.lower() == 'mpdiskplhalofixbulgeflat': rhodms.append(pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3.) elif options.potential.lower() == 'mpdiskflplhalofixplfixbulgeflat': rhodms.append(pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3.) elif options.potential.lower() == 'dpdiskplhalofixbulgeflat' \ or options.potential.lower() == 'dpdiskplhalofixbulgeflatwgas' \ or options.potential.lower() == 'dpdiskplhalofixbulgeflatwgasalt' \ or options.potential.lower() == 'dpdiskflplhalofixbulgeflatwgas': rhodms.append(pot[1].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3.) #rhoo rhoos.append(potential.evaluateDensities(1.,0.,pot)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3.) #surfz surfzs.append(2.*integrate.quad((lambda zz: potential.evaluateDensities(1.,zz,pot)),0.,options.height/_REFR0/ro)[0]*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*_REFR0*ro) #surfz800 surfz800s.append(2.*integrate.quad((lambda zz: potential.evaluateDensities(1.,zz,pot)),0.,0.8/_REFR0/ro)[0]*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*_REFR0*ro) #surzdisk if 'mpdisk' in options.potential.lower() or 'mwpotential' in options.potential.lower(): surfzdisks.append(2.*integrate.quad((lambda zz: potential.evaluateDensities(1.,zz,pot[0])),0.,options.height/_REFR0/ro)[0]*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*_REFR0*ro) surfzdiskzm= 2.*integrate.quad((lambda zz: potential.evaluateDensities(1.,zz,pot[0])),0.,tz)[0]*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*_REFR0*ro elif 'dpdisk' in options.potential.lower(): surfzdisks.append(2.*pot[0].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3.*zhexps[-1]*ro*_REFR0*1000.) #rhooalt if options.potential.lower() == 'mpdiskplhalofixbulgeflat': rhooalts.append(rhoos[-1]-pot[0].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3.+surfzdiskzm/2./zhexps[-1]/ro/_REFR0/1000./(1.-numpy.exp(-tz/zhexps[-1]))) elif options.potential.lower() == 'dpdiskplhalofixbulgeflat' \ or options.potential.lower() == 'dpdiskplhalofixbulgeflatwgas' \ or options.potential.lower() == 'dpdiskplhalofixbulgeflatwgasalt' \ or options.potential.lower() == 'dpdiskflplhalofixbulgeflatwgas': rhooalts.append(rhoos[-1]) #massdisk if options.potential.lower() == 'dpdiskplhalofixbulgeflat' \ or options.potential.lower() == 'dpdiskplhalofixbulgeflatwgas' \ or options.potential.lower() == 'dpdiskplhalofixbulgeflatwgasalt' \ or options.potential.lower() == 'dpdiskflplhalofixbulgeflatwgas': rhod= pot[0].dens(1.,0.)*_REFV0**2.*vo**2./_REFR0**2./ro**2./4.302*10.**-3. else: rhod= surfzdiskzm/2./zhexps[-1]/ro/_REFR0/1000./(1.-numpy.exp(-tz/zhexps[-1])) massdisks.append(rhod*2.*zhexps[-1]*numpy.exp(1./rdexps[-1])*rdexps[-1]**2.*2.*numpy.pi*(ro*_REFR0)**3./10.) #plhalo if options.potential.lower() == 'mpdiskplhalofixbulgeflat': plhalos.append(pot[1].alpha) plhalos.append((1.-pot[1].alpha)/(pot[1].alpha-3.)) elif options.potential.lower() == 'dpdiskplhalofixbulgeflat' \ or options.potential.lower() == 'dpdiskplhalofixbulgeflatwgas' \ or options.potential.lower() == 'dpdiskplhalofixbulgeflatwgasalt' \ or options.potential.lower() == 'dpdiskflplhalofixbulgeflatwgas': plhalos.append(pot[1].alpha) rorss.append((1.-pot[1].alpha)/(pot[1].alpha-3.)) #dlnvcdlnr if options.potential.lower() == 'dpdiskplhalofixbulgeflat' \ or options.potential.lower() == 'dpdiskplhalofixbulgeflatwgas' \ or options.potential.lower() == 'dpdiskplhalofixbulgeflatwgasalt' \ or options.potential.lower() == 'dpdiskflplhalofixbulgeflatwgas': dlnvcdlnrs.append(potential.dvcircdR(pot,1.)) else: dlnvcdlnrs.append(potential.dvcircdR(pot,1.)) #vcdvc if options.potential.lower() == 'dpdiskplhalofixbulgeflat' \ or options.potential.lower() == 'dpdiskplhalofixbulgeflatwgas' \ or options.potential.lower() == 'dpdiskplhalofixbulgeflatwgasalt' \ or options.potential.lower() == 'dpdiskflplhalofixbulgeflatwgas': vcdvcros.append(pot[0].vcirc(1.)/potential.vcirc(pot,1.)) vcdvcs.append(pot[0].vcirc(2.2*rdexps[-1])/potential.vcirc(pot,2.2*rdexps[-1])) else: vcdvcros.append(pot[0].vcirc(1.)/potential.vcirc(pot,1.)) vcdvcs.append(pot[0].vcirc(2.2*rdexps[-1])/potential.vcirc(pot,2.2*rdexps[-1])) #mloglike mloglikemins.append(chi2s[solindx]) #escape velocity vescs.append(potential.vesc(pot,1.)*_REFV0) if options.fitdvt: dvts.append(sols[solindx][0]) #Gather fehs= numpy.array(fehs) afes= numpy.array(afes) zmedians= numpy.array(zmedians) ndatas= numpy.array(ndatas) #Basic parameters hrs= numpy.array(hrs) srs= numpy.array(srs) szs= numpy.array(szs) hsrs= numpy.array(hsrs) hszs= numpy.array(hszs) outfracs= numpy.array(outfracs) vcs= numpy.array(vcs) rds= numpy.array(rds) zhs= numpy.array(zhs) rdexps= numpy.array(rdexps) zhexps= numpy.array(zhexps) dlnvcdlnrs= numpy.array(dlnvcdlnrs) plhalos= numpy.array(plhalos) rorss= numpy.array(rorss) if options.fitdvt: dvts= numpy.array(dvts) #derived parameters surfzs= numpy.array(surfzs) surfz800s= numpy.array(surfz800s) surfzdisks= numpy.array(surfzdisks) massdisks= numpy.array(massdisks) rhoos= numpy.array(rhoos) rhooalts= numpy.array(rhooalts) rhodms= numpy.array(rhodms) vcdvcros= numpy.array(vcdvcros) vcdvcs= numpy.array(vcdvcs) rexps= numpy.sqrt(2.)*(rds+zhs)/2.2 mloglikemins= numpy.array(mloglikemins) vescs= numpy.array(vescs) #Load into dictionary out= {} out['feh']= fehs out['afe']= afes out['zmedian']= zmedians out['ndata']= ndatas out['hr']= hrs out['sr']= srs out['sz']= szs out['hsr']= hsrs out['hsz']= hszs out['outfrac']= outfracs out['vc']= vcs out['rd']= rds out['zh']= zhs out['rdexp']= rdexps out['zhexp']= zhexps out['dlnvcdlnr']= dlnvcdlnrs out['plhalo']= plhalos out['rors']= rorss out['surfz']= surfzs out['surfz800']= surfz800s out['surfzdisk']= surfzdisks out['massdisk']= massdisks out['rhoo']= rhoos out['rhooalt']= rhooalts out['rhodm']= rhodms out['vcdvc']= vcdvcs out['vcdvcro']= vcdvcros out['rexp']= rexps out['mloglikemin']= mloglikemins out['vesc']= vescs if options.fitdvt: out['dvt']= dvts if nomedian: return out else: return add_median(out,boot=boot)