Exemple #1
0
def _integrateRZOrbit(vxvv,pot,t,method,dt):
    """
    NAME:
       _integrateRZOrbit
    PURPOSE:
       integrate an orbit in a Phi(R,z) potential in the (R,z) plane
    INPUT:
       vxvv - array with the initial conditions stacked like
              [R,vR,vT,z,vz]; vR outward!
       pot - Potential instance
       t - list of times at which to output (0 has to be in this!)
       method - 'odeint' or 'leapfrog'
       dt - if set, force the integrator to use this basic stepsize; must be an integer divisor of output stepsize
    OUTPUT:
       [:,5] array of [R,vR,vT,z,vz] at each t
    HISTORY:
       2010-04-16 - Written - Bovy (NYU)
    """
    #First check that the potential has C
    if '_c' in method:
        if not ext_loaded or not _check_c(pot):
            if ('leapfrog' in method or 'symplec' in method):
                method= 'leapfrog'
            else:
                method= 'odeint'
            if not ext_loaded: # pragma: no cover
                warnings.warn("Cannot use C integration because C extension not loaded (using %s instead)" % (method), galpyWarning)
            else:
                warnings.warn("Cannot use C integration because some of the potentials are not implemented in C (using %s instead)" % (method), galpyWarning)
    if method.lower() == 'leapfrog' \
            or method.lower() == 'leapfrog_c' or method.lower() == 'rk4_c' \
            or method.lower() == 'rk6_c' or method.lower() == 'symplec4_c' \
            or method.lower() == 'symplec6_c' or method.lower() == 'dopr54_c' or method.lower() == 'dop853_c':
        #We hack this by upgrading to a FullOrbit
        this_vxvv= nu.zeros(len(vxvv)+1)
        this_vxvv[0:len(vxvv)]= vxvv
        tmp_out= _integrateFullOrbit(this_vxvv,pot,t,method,dt)
        #tmp_out is (nt,6)
        out= tmp_out[:,0:5]
    elif method.lower() == 'odeint' or method.lower() == 'dop853':
        l= vxvv[0]*vxvv[2]
        l2= l**2.
        init= [vxvv[0],vxvv[1],vxvv[3],vxvv[4]]
        if method.lower() == "dop853":
            intOut = dop853(_RZEOM, init, t, args=(pot, l2))
        else:
            intOut = integrate.odeint(_RZEOM, init, t, args=(pot, l2),
                                      rtol=10. ** -8.)  # ,mxstep=100000000)
        out= nu.zeros((len(t),5))
        out[:,0]= intOut[:,0]
        out[:,1]= intOut[:,1]
        out[:,3]= intOut[:,2]
        out[:,4]= intOut[:,3]
        out[:,2]= l/out[:,0]
    #post-process to remove negative radii
    neg_radii= (out[:,0] < 0.)
    out[neg_radii,0]= -out[neg_radii,0]
    return out
Exemple #2
0
def _integrateLinearOrbit(vxvv,pot,t,method,dt):
    """
    NAME:
       integrateLinearOrbit
    PURPOSE:
       integrate a one-dimensional orbit
    INPUT:
       vxvv - initial condition [x,vx]
       pot - linearPotential or list of linearPotentials
       t - list of times at which to output (0 has to be in this!)
       method - 'odeint' or 'leapfrog'
    OUTPUT:
       [:,2] array of [x,vx] at each t
    HISTORY:
       2010-07-13- Written - Bovy (NYU)
       2018-10-05- Added support for C integration - Bovy (UofT)
    """
    #First check that the potential has C
    if '_c' in method:
        if not ext_loaded or not _check_c(pot):
            if ('leapfrog' in method or 'symplec' in method):
                method= 'leapfrog'
            else:
                method= 'odeint'
            if not ext_loaded: # pragma: no cover
                warnings.warn("Cannot use C integration because C extension not loaded (using %s instead)" % (method), galpyWarning)
            else:
                warnings.warn("Cannot use C integration because some of the potentials are not implemented in C (using %s instead)" % (method), galpyWarning)
    if method.lower() == 'leapfrog':
        return symplecticode.leapfrog(lambda x,t=t: _evaluatelinearForces(pot,x,
                                                                         t=t),
                                      nu.array(vxvv),
                                      t,rtol=10.**-8)
    elif method.lower() == 'dop853':
        return dop853(func=_linearEOM, x=vxvv, t=t, args=(pot,))
    elif ext_loaded and \
            (method.lower() == 'leapfrog_c' or method.lower() == 'rk4_c' \
            or method.lower() == 'rk6_c' or method.lower() == 'symplec4_c' \
            or method.lower() == 'symplec6_c' or method.lower() == 'dopr54_c' \
            or method.lower() == 'dop853_c'):
        warnings.warn("Using C implementation to integrate orbits",
                      galpyWarningVerbose)
        out, msg= integrateLinearOrbit_c(pot,nu.array(vxvv),t,method,dt=dt)
        return out
    elif method.lower() == 'odeint' or not ext_loaded:
        return integrate.odeint(_linearEOM,vxvv,t,args=(pot,),rtol=10.**-8.)
Exemple #3
0
def _integrateRZOrbit(vxvv, pot, t, method, dt):
    """
    NAME:
       _integrateRZOrbit
    PURPOSE:
       integrate an orbit in a Phi(R,z) potential in the (R,z) plane
    INPUT:
       vxvv - array with the initial conditions stacked like
              [R,vR,vT,z,vz]; vR outward!
       pot - Potential instance
       t - list of times at which to output (0 has to be in this!)
       method - 'odeint' or 'leapfrog'
       dt - if set, force the integrator to use this basic stepsize; must be an integer divisor of output stepsize
    OUTPUT:
       [:,5] array of [R,vR,vT,z,vz] at each t
    HISTORY:
       2010-04-16 - Written - Bovy (NYU)
    """
    #First check that the potential has C
    if '_c' in method:
        if not ext_loaded or not _check_c(pot):
            if ('leapfrog' in method or 'symplec' in method):
                method = 'leapfrog'
            else:
                method = 'odeint'
            if not ext_loaded:  # pragma: no cover
                warnings.warn(
                    "Cannot use C integration because C extension not loaded (using %s instead)"
                    % (method), galpyWarning)
            else:
                warnings.warn(
                    "Cannot use C integration because some of the potentials are not implemented in C (using %s instead)"
                    % (method), galpyWarning)
    if method.lower() == 'leapfrog' \
            or method.lower() == 'leapfrog_c' or method.lower() == 'rk4_c' \
            or method.lower() == 'rk6_c' or method.lower() == 'symplec4_c' \
            or method.lower() == 'symplec6_c' or method.lower() == 'dopr54_c' or method.lower() == 'dop853_c':
        #We hack this by upgrading to a FullOrbit
        this_vxvv = nu.zeros(len(vxvv) + 1)
        this_vxvv[0:len(vxvv)] = vxvv
        tmp_out = _integrateFullOrbit(this_vxvv, pot, t, method, dt)
        #tmp_out is (nt,6)
        out = tmp_out[:, 0:5]
    elif method.lower() == 'odeint' or method.lower() == 'dop853':
        l = vxvv[0] * vxvv[2]
        l2 = l**2.
        init = [vxvv[0], vxvv[1], vxvv[3], vxvv[4]]
        if method.lower() == "dop853":
            intOut = dop853(_RZEOM, init, t, args=(pot, l2))
        else:
            intOut = integrate.odeint(_RZEOM,
                                      init,
                                      t,
                                      args=(pot, l2),
                                      rtol=10.**-8.)  # ,mxstep=100000000)
        out = nu.zeros((len(t), 5))
        out[:, 0] = intOut[:, 0]
        out[:, 1] = intOut[:, 1]
        out[:, 3] = intOut[:, 2]
        out[:, 4] = intOut[:, 3]
        out[:, 2] = l / out[:, 0]
    #post-process to remove negative radii
    neg_radii = (out[:, 0] < 0.)
    out[neg_radii, 0] = -out[neg_radii, 0]
    return out
Exemple #4
0
def _integrateFullOrbit(vxvv, pot, t, method, dt):
    """
    NAME:
       _integrateFullOrbit
    PURPOSE:
       integrate an orbit in a Phi(R,z,phi) potential
    INPUT:
       vxvv - array with the initial conditions stacked like
              [R,vR,vT,z,vz,phi]; vR outward!
       pot - Potential instance
       t - list of times at which to output (0 has to be in this!)
       method - 'odeint' or 'leapfrog'
       dt - if set, force the integrator to use this basic stepsize; must be an integer divisor of output stepsize
    OUTPUT:
       [:,5] array of [R,vR,vT,z,vz,phi] at each t
    HISTORY:
       2010-08-01 - Written - Bovy (NYU)
    """
    #First check that the potential has C
    if '_c' in method:
        if not ext_loaded or not _check_c(pot):
            if ('leapfrog' in method or 'symplec' in method):
                method = 'leapfrog'
            else:
                method = 'odeint'
            if not ext_loaded:  # pragma: no cover
                warnings.warn(
                    "Cannot use C integration because C extension not loaded (using %s instead)"
                    % (method), galpyWarning)
            else:
                warnings.warn(
                    "Cannot use C integration because some of the potentials are not implemented in C (using %s instead)"
                    % (method), galpyWarning)
    # Now check that we aren't trying to integrate a dissipative force
    # with a symplectic integrator
    if _isDissipative(pot) and ('leapfrog' in method or 'symplec' in method):
        if '_c' in method:
            method = 'dopr54_c'
        else:
            method = 'odeint'
        warnings.warn(
            "Cannot use symplectic integration because some of the included forces are dissipative (using non-symplectic integrator %s instead)"
            % (method), galpyWarning)
    if method.lower() == 'leapfrog':
        #go to the rectangular frame
        this_vxvv = nu.array([
            vxvv[0] * nu.cos(vxvv[5]), vxvv[0] * nu.sin(vxvv[5]), vxvv[3],
            vxvv[1] * nu.cos(vxvv[5]) - vxvv[2] * nu.sin(vxvv[5]),
            vxvv[2] * nu.cos(vxvv[5]) + vxvv[1] * nu.sin(vxvv[5]), vxvv[4]
        ])
        #integrate
        out = symplecticode.leapfrog(_rectForce,
                                     this_vxvv,
                                     t,
                                     args=(pot, ),
                                     rtol=10.**-8)
        #go back to the cylindrical frame
        R = nu.sqrt(out[:, 0]**2. + out[:, 1]**2.)
        phi = nu.arccos(out[:, 0] / R)
        phi[(out[:, 1] < 0.)] = 2. * nu.pi - phi[(out[:, 1] < 0.)]
        vR = out[:, 3] * nu.cos(phi) + out[:, 4] * nu.sin(phi)
        vT = out[:, 4] * nu.cos(phi) - out[:, 3] * nu.sin(phi)
        out[:, 3] = out[:, 2]
        out[:, 4] = out[:, 5]
        out[:, 0] = R
        out[:, 1] = vR
        out[:, 2] = vT
        out[:, 5] = phi
    elif ext_loaded and \
            (method.lower() == 'leapfrog_c' or method.lower() == 'rk4_c' \
            or method.lower() == 'rk6_c' or method.lower() == 'symplec4_c' \
            or method.lower() == 'symplec6_c' or method.lower() == 'dopr54_c' \
            or method.lower() == 'dop853_c'):
        warnings.warn("Using C implementation to integrate orbits",
                      galpyWarningVerbose)
        #go to the rectangular frame
        this_vxvv = nu.array([
            vxvv[0] * nu.cos(vxvv[5]), vxvv[0] * nu.sin(vxvv[5]), vxvv[3],
            vxvv[1] * nu.cos(vxvv[5]) - vxvv[2] * nu.sin(vxvv[5]),
            vxvv[2] * nu.cos(vxvv[5]) + vxvv[1] * nu.sin(vxvv[5]), vxvv[4]
        ])
        #integrate
        tmp_out, msg = integrateFullOrbit_c(pot, this_vxvv, t, method, dt=dt)
        #go back to the cylindrical frame
        R = nu.sqrt(tmp_out[:, 0]**2. + tmp_out[:, 1]**2.)
        phi = nu.arccos(tmp_out[:, 0] / R)
        phi[(tmp_out[:, 1] < 0.)] = 2. * nu.pi - phi[(tmp_out[:, 1] < 0.)]
        vR = tmp_out[:, 3] * nu.cos(phi) + tmp_out[:, 4] * nu.sin(phi)
        vT = tmp_out[:, 4] * nu.cos(phi) - tmp_out[:, 3] * nu.sin(phi)
        out = nu.zeros((len(t), 6))
        out[:, 0] = R
        out[:, 1] = vR
        out[:, 2] = vT
        out[:, 5] = phi
        out[:, 3] = tmp_out[:, 2]
        out[:, 4] = tmp_out[:, 5]
    elif method.lower() == 'odeint' or method.lower(
    ) == 'dop853' or not ext_loaded:
        vphi = vxvv[2] / vxvv[0]
        init = [vxvv[0], vxvv[1], vxvv[5], vphi, vxvv[3], vxvv[4]]
        if method == 'dop853':
            intOut = dop853(_FullEOM, init, t, args=(pot, ))
        else:
            intOut = integrate.odeint(_FullEOM,
                                      init,
                                      t,
                                      args=(pot, ),
                                      rtol=10.**-8.)  #,mxstep=100000000)
        out = nu.zeros((len(t), 6))
        out[:, 0] = intOut[:, 0]
        out[:, 1] = intOut[:, 1]
        out[:, 2] = out[:, 0] * intOut[:, 3]
        out[:, 3] = intOut[:, 4]
        out[:, 4] = intOut[:, 5]
        out[:, 5] = intOut[:, 2]
    #post-process to remove negative radii
    neg_radii = (out[:, 0] < 0.)
    out[neg_radii, 0] = -out[neg_radii, 0]
    out[neg_radii, 5] += m.pi
    return out
Exemple #5
0
def _integrateOrbit_dxdv(vxvv, dxdv, pot, t, method, rectIn, rectOut):
    """
    NAME:
       _integrateOrbit_dxdv
    PURPOSE:
       integrate an orbit and area of phase space in a Phi(R) potential 
       in the (R,phi)-plane
    INPUT:
       vxvv - array with the initial conditions stacked like
              [R,vR,vT,phi]; vR outward!
       dxdv - difference to integrate [dR,dvR,dvT,dphi]
       pot - Potential instance
       t - list of times at which to output (0 has to be in this!)
       method - 'odeint' or 'leapfrog'
       rectIn= (False) if True, input dxdv is in rectangular coordinates
       rectOut= (False) if True, output dxdv (that in orbit_dxdv) is in rectangular coordinates
    OUTPUT:
       [:,8] array of [R,vR,vT,phi,dR,dvR,dvT,dphi] at each t
       error message from integrator
    HISTORY:
       2010-10-17 - Written - Bovy (IAS)
    """
    #First check that the potential has C
    if '_c' in method:
        allHasC = _check_c(pot) and _check_c(pot, dxdv=True)
        if not ext_loaded or \
        (not allHasC and not 'leapfrog' in method and not 'symplec' in method):
            method = 'odeint'
            if not ext_loaded:  # pragma: no cover
                warnings.warn("Using odeint because C extension not loaded",
                              galpyWarning)
            else:
                warnings.warn(
                    "Using odeint because not all used potential have adequate C implementations to integrate phase-space volumes",
                    galpyWarning)
    #go to the rectangular frame
    this_vxvv = nu.array([
        vxvv[0] * nu.cos(vxvv[3]), vxvv[0] * nu.sin(vxvv[3]),
        vxvv[1] * nu.cos(vxvv[3]) - vxvv[2] * nu.sin(vxvv[3]),
        vxvv[2] * nu.cos(vxvv[3]) + vxvv[1] * nu.sin(vxvv[3])
    ])
    if not rectIn:
        this_dxdv = nu.array([
            nu.cos(vxvv[3]) * dxdv[0] - vxvv[0] * nu.sin(vxvv[3]) * dxdv[3],
            nu.sin(vxvv[3]) * dxdv[0] + vxvv[0] * nu.cos(vxvv[3]) * dxdv[3],
            -(vxvv[1] * nu.sin(vxvv[3]) + vxvv[2] * nu.cos(vxvv[3])) * dxdv[3]
            + nu.cos(vxvv[3]) * dxdv[1] - nu.sin(vxvv[3]) * dxdv[2],
            (vxvv[1] * nu.cos(vxvv[3]) - vxvv[2] * nu.sin(vxvv[3])) * dxdv[3] +
            nu.sin(vxvv[3]) * dxdv[1] + nu.cos(vxvv[3]) * dxdv[2]
        ])
    else:
        this_dxdv = dxdv
    if 'leapfrog' in method.lower() or 'symplec' in method.lower():
        raise TypeError(
            'Symplectic integration for phase-space volume is not possible')
    elif ext_loaded and \
            (method.lower() == 'rk4_c' or method.lower() == 'rk6_c' \
            or method.lower() == 'dopr54_c' or method.lower() == 'dop853_c'):
        warnings.warn("Using C implementation to integrate orbits",
                      galpyWarningVerbose)
        #integrate
        tmp_out, msg = integratePlanarOrbit_dxdv_c(pot, this_vxvv, this_dxdv,
                                                   t, method)
    elif method.lower() == 'odeint' or not ext_loaded or method.lower(
    ) == 'dop853':
        init = [
            this_vxvv[0], this_vxvv[1], this_vxvv[2], this_vxvv[3],
            this_dxdv[0], this_dxdv[1], this_dxdv[2], this_dxdv[3]
        ]
        #integrate
        if method.lower() == "dop853":
            tmp_out = dop853(_EOM_dxdv, init, t, args=(pot, ))
        else:
            tmp_out = integrate.odeint(_EOM_dxdv,
                                       init,
                                       t,
                                       args=(pot, ),
                                       rtol=10.**-8.)  #,mxstep=100000000)
        msg = 0
    else:
        raise NotImplementedError(
            "requested integration method does not exist")
    #go back to the cylindrical frame
    R = nu.sqrt(tmp_out[:, 0]**2. + tmp_out[:, 1]**2.)
    phi = nu.arccos(tmp_out[:, 0] / R)
    phi[(tmp_out[:, 1] < 0.)] = 2. * nu.pi - phi[(tmp_out[:, 1] < 0.)]
    vR = tmp_out[:, 2] * nu.cos(phi) + tmp_out[:, 3] * nu.sin(phi)
    vT = tmp_out[:, 3] * nu.cos(phi) - tmp_out[:, 2] * nu.sin(phi)
    cp = nu.cos(phi)
    sp = nu.sin(phi)
    dR = cp * tmp_out[:, 4] + sp * tmp_out[:, 5]
    dphi = (cp * tmp_out[:, 5] - sp * tmp_out[:, 4]) / R
    dvR = cp * tmp_out[:, 6] + sp * tmp_out[:, 7] + vT * dphi
    dvT = cp * tmp_out[:, 7] - sp * tmp_out[:, 6] - vR * dphi
    out = nu.zeros((len(t), 8))
    out[:, 0] = R
    out[:, 1] = vR
    out[:, 2] = vT
    out[:, 3] = phi
    if rectOut:
        out[:, 4:] = tmp_out[:, 4:]
    else:
        out[:, 4] = dR
        out[:, 7] = dphi
        out[:, 5] = dvR
        out[:, 6] = dvT
    _parse_warnmessage(msg)
    return (out, msg)
Exemple #6
0
def _integrateOrbit_dxdv(vxvv,dxdv,pot,t,method,rectIn,rectOut):
    """
    NAME:
       _integrateOrbit_dxdv
    PURPOSE:
       integrate an orbit and area of phase space in a Phi(R) potential 
       in the (R,phi)-plane
    INPUT:
       vxvv - array with the initial conditions stacked like
              [R,vR,vT,phi]; vR outward!
       dxdv - difference to integrate [dR,dvR,dvT,dphi]
       pot - Potential instance
       t - list of times at which to output (0 has to be in this!)
       method - 'odeint' or 'leapfrog'
       rectIn= (False) if True, input dxdv is in rectangular coordinates
       rectOut= (False) if True, output dxdv (that in orbit_dxdv) is in rectangular coordinates
    OUTPUT:
       [:,8] array of [R,vR,vT,phi,dR,dvR,dvT,dphi] at each t
       error message from integrator
    HISTORY:
       2010-10-17 - Written - Bovy (IAS)
    """
    #First check that the potential has C
    if '_c' in method:
        allHasC= _check_c(pot) and _check_c(pot,dxdv=True)
        if not ext_loaded or \
        (not allHasC and not 'leapfrog' in method and not 'symplec' in method):
            method= 'odeint'
            if not ext_loaded: # pragma: no cover
                warnings.warn("Using odeint because C extension not loaded",galpyWarning)
            else:
                warnings.warn("Using odeint because not all used potential have adequate C implementations to integrate phase-space volumes",galpyWarning)
    #go to the rectangular frame
    this_vxvv= nu.array([vxvv[0]*nu.cos(vxvv[3]),
                         vxvv[0]*nu.sin(vxvv[3]),
                         vxvv[1]*nu.cos(vxvv[3])-vxvv[2]*nu.sin(vxvv[3]),
                         vxvv[2]*nu.cos(vxvv[3])+vxvv[1]*nu.sin(vxvv[3])])
    if not rectIn:
        this_dxdv= nu.array([nu.cos(vxvv[3])*dxdv[0]
                             -vxvv[0]*nu.sin(vxvv[3])*dxdv[3],
                             nu.sin(vxvv[3])*dxdv[0]
                             +vxvv[0]*nu.cos(vxvv[3])*dxdv[3],
                             -(vxvv[1]*nu.sin(vxvv[3])
                               +vxvv[2]*nu.cos(vxvv[3]))*dxdv[3]
                             +nu.cos(vxvv[3])*dxdv[1]-nu.sin(vxvv[3])*dxdv[2],
                             (vxvv[1]*nu.cos(vxvv[3])
                              -vxvv[2]*nu.sin(vxvv[3]))*dxdv[3]
                             +nu.sin(vxvv[3])*dxdv[1]+nu.cos(vxvv[3])*dxdv[2]])
    else:
        this_dxdv= dxdv
    if 'leapfrog' in method.lower() or 'symplec' in method.lower():
        raise TypeError('Symplectic integration for phase-space volume is not possible')
    elif ext_loaded and \
            (method.lower() == 'rk4_c' or method.lower() == 'rk6_c' \
            or method.lower() == 'dopr54_c' or method.lower() == 'dop853_c'):
        warnings.warn("Using C implementation to integrate orbits",galpyWarningVerbose)
        #integrate
        tmp_out, msg= integratePlanarOrbit_dxdv_c(pot,this_vxvv,this_dxdv,
                                                  t,method)
    elif method.lower() == 'odeint' or not ext_loaded or method.lower() == 'dop853':
        init= [this_vxvv[0],this_vxvv[1],this_vxvv[2],this_vxvv[3],
               this_dxdv[0],this_dxdv[1],this_dxdv[2],this_dxdv[3]]
        #integrate
        if method.lower() == "dop853":
            tmp_out = dop853(_EOM_dxdv, init, t, args=(pot,))
        else:
            tmp_out= integrate.odeint(_EOM_dxdv,init,t,args=(pot,),
                                      rtol=10.**-8.)#,mxstep=100000000)
        msg= 0
    else:
        raise NotImplementedError("requested integration method does not exist")
    #go back to the cylindrical frame
    R= nu.sqrt(tmp_out[:,0]**2.+tmp_out[:,1]**2.)
    phi= nu.arccos(tmp_out[:,0]/R)
    phi[(tmp_out[:,1] < 0.)]= 2.*nu.pi-phi[(tmp_out[:,1] < 0.)]
    vR= tmp_out[:,2]*nu.cos(phi)+tmp_out[:,3]*nu.sin(phi)
    vT= tmp_out[:,3]*nu.cos(phi)-tmp_out[:,2]*nu.sin(phi)
    cp= nu.cos(phi)
    sp= nu.sin(phi)
    dR= cp*tmp_out[:,4]+sp*tmp_out[:,5]
    dphi= (cp*tmp_out[:,5]-sp*tmp_out[:,4])/R
    dvR= cp*tmp_out[:,6]+sp*tmp_out[:,7]+vT*dphi
    dvT= cp*tmp_out[:,7]-sp*tmp_out[:,6]-vR*dphi
    out= nu.zeros((len(t),8))
    out[:,0]= R
    out[:,1]= vR
    out[:,2]= vT
    out[:,3]= phi
    if rectOut:
        out[:,4:]= tmp_out[:,4:]
    else:
        out[:,4]= dR
        out[:,7]= dphi
        out[:,5]= dvR
        out[:,6]= dvT
    _parse_warnmessage(msg)
    return (out,msg)
Exemple #7
0
def _integrateOrbit(vxvv,pot,t,method,dt):
    """
    NAME:
       _integrateOrbit
    PURPOSE:
       integrate an orbit in a Phi(R) potential in the (R,phi)-plane
    INPUT:
       vxvv - array with the initial conditions stacked like
              [R,vR,vT,phi]; vR outward!
       pot - Potential instance
       t - list of times at which to output (0 has to be in this!)
       method - 'odeint' or 'leapfrog'
       dt- if set, force the integrator to use this basic stepsize; must be an integer divisor of output stepsize
    OUTPUT:
       [:,4] array of [R,vR,vT,phi] at each t
    HISTORY:
       2010-07-20 - Written - Bovy (NYU)
    """
    #First check that the potential has C
    if '_c' in method:
        if not ext_loaded or not _check_c(pot):
            if ('leapfrog' in method or 'symplec' in method):
                method= 'leapfrog'
            else:
                method= 'odeint'
            if not ext_loaded: # pragma: no cover
                warnings.warn("Cannot use C integration because C extension not loaded (using %s instead)" % (method), galpyWarning)
            else:
                warnings.warn("Cannot use C integration because some of the potentials are not implemented in C (using %s instead)" % (method), galpyWarning)
    if method.lower() == 'leapfrog':
        #go to the rectangular frame
        this_vxvv= nu.array([vxvv[0]*nu.cos(vxvv[3]),
                             vxvv[0]*nu.sin(vxvv[3]),
                             vxvv[1]*nu.cos(vxvv[3])-vxvv[2]*nu.sin(vxvv[3]),
                             vxvv[2]*nu.cos(vxvv[3])+vxvv[1]*nu.sin(vxvv[3])])
        #integrate
        tmp_out= symplecticode.leapfrog(_rectForce,this_vxvv,
                                        t,args=(pot,),rtol=10.**-8)
        #go back to the cylindrical frame
        R= nu.sqrt(tmp_out[:,0]**2.+tmp_out[:,1]**2.)
        phi= nu.arccos(tmp_out[:,0]/R)
        phi[(tmp_out[:,1] < 0.)]= 2.*nu.pi-phi[(tmp_out[:,1] < 0.)]
        vR= tmp_out[:,2]*nu.cos(phi)+tmp_out[:,3]*nu.sin(phi)
        vT= tmp_out[:,3]*nu.cos(phi)-tmp_out[:,2]*nu.sin(phi)
        out= nu.zeros((len(t),4))
        out[:,0]= R
        out[:,1]= vR
        out[:,2]= vT
        out[:,3]= phi
        msg= 0
    elif ext_loaded and \
            (method.lower() == 'leapfrog_c' or method.lower() == 'rk4_c' \
            or method.lower() == 'rk6_c' or method.lower() == 'symplec4_c' \
            or method.lower() == 'symplec6_c' or method.lower() == 'dopr54_c' \
             or method.lower() == 'dop853_c'):
        warnings.warn("Using C implementation to integrate orbits",galpyWarningVerbose)
        #go to the rectangular frame
        this_vxvv= nu.array([vxvv[0]*nu.cos(vxvv[3]),
                             vxvv[0]*nu.sin(vxvv[3]),
                             vxvv[1]*nu.cos(vxvv[3])-vxvv[2]*nu.sin(vxvv[3]),
                             vxvv[2]*nu.cos(vxvv[3])+vxvv[1]*nu.sin(vxvv[3])])
        #integrate
        tmp_out, msg= integratePlanarOrbit_c(pot,this_vxvv,
                                             t,method,dt=dt)
        #go back to the cylindrical frame
        R= nu.sqrt(tmp_out[:,0]**2.+tmp_out[:,1]**2.)
        phi= nu.arccos(tmp_out[:,0]/R)
        phi[(tmp_out[:,1] < 0.)]= 2.*nu.pi-phi[(tmp_out[:,1] < 0.)]
        vR= tmp_out[:,2]*nu.cos(phi)+tmp_out[:,3]*nu.sin(phi)
        vT= tmp_out[:,3]*nu.cos(phi)-tmp_out[:,2]*nu.sin(phi)
        out= nu.zeros((len(t),4))
        out[:,0]= R
        out[:,1]= vR
        out[:,2]= vT
        out[:,3]= phi
    elif method.lower() == 'odeint' or method.lower() == 'dop853' or not ext_loaded:
        vphi= vxvv[2]/vxvv[0]
        init= [vxvv[0],vxvv[1],vxvv[3],vphi]
        if method == 'dop853':
            intOut = dop853(_EOM, init, t, args=(pot,))
        else:
            intOut= integrate.odeint(_EOM,init,t,args=(pot,),
                                     rtol=10.**-8.)#,mxstep=100000000)
        out= nu.zeros((len(t),4))
        out[:,0]= intOut[:,0]
        out[:,1]= intOut[:,1]
        out[:,3]= intOut[:,2]
        out[:,2]= out[:,0]*intOut[:,3]
        msg= 0
    else:
        raise NotImplementedError("requested integration method does not exist")
    #post-process to remove negative radii
    neg_radii= (out[:,0] < 0.)
    out[neg_radii,0]= -out[neg_radii,0]
    out[neg_radii,3]+= m.pi
    _parse_warnmessage(msg)
    return (out,msg)