Exemple #1
0
def draw_exp(params, image=None, gsparams=None, dtype=None):
    """Draw an Exponential profile in k-space onto the given image

    params = [ half_light_radius, flux, e1, e2, x0, y0 ]
    image is optional, but if provided will be used as is.
    """
    exp = galsim.Exponential(params[0], flux=params[1], gsparams=gsparams)
    exp = exp._shear(galsim._Shear(params[2] + 1j * params[3]))
    exp = exp._shift(galsim.PositionD(params[4], params[5]))
    if image is None:
        image = exp.drawKImage(dtype=dtype, nx=256, ny=256)
    else:
        image = exp._drawKImage(image)
    return image
def draw_exp(params, image=None, gsparams=None, dtype=None):
    """Draw an Exponential profile in k-space onto the given image

    params = [ half_light_radius, flux, e1, e2, x0, y0 ]
    image is optional, but if provided will be used as is.
    """
    exp = galsim.Exponential(params[0], flux=params[1], gsparams=gsparams)
    exp = exp._shear(galsim._Shear(params[2] + 1j * params[3]))
    exp = exp._shift(galsim.PositionD(params[4],params[5]))
    if image is None:
        image = exp.drawKImage(dtype=dtype, nx=256, ny=256)
    else:
        image = exp._drawKImage(image)
    return image
Exemple #3
0
def draw_spergel(params, image=None, gsparams=None, dtype=None):
    """Draw a Spergel profile in k-space onto the given image

    params = [ half_light_radius, flux, e1, e2, x0, y0 ]
    image is optional, but if provided will be used as is.
    """
    nu = 0.5
    gal = galsim.Spergel(nu, params[0], flux=params[1], gsparams=gsparams)
    gal = gal._shear(galsim._Shear(params[2] + 1j * params[3]))
    gal = gal._shift(galsim.PositionD(params[4], params[5]))
    if image is None:
        image = gal.drawKImage(dtype=dtype, nx=256, ny=256)
    else:
        image = gal._drawKImage(image)
    return image
def draw_spergel(params, image=None, gsparams=None, dtype=None):
    """Draw a Spergel profile in k-space onto the given image

    params = [ half_light_radius, flux, e1, e2, x0, y0 ]
    image is optional, but if provided will be used as is.
    """
    nu = 0.5
    gal = galsim.Spergel(nu, params[0], flux=params[1], gsparams=gsparams)
    gal = gal._shear(galsim._Shear(params[2] + 1j * params[3]))
    gal = gal._shift(galsim.PositionD(params[4],params[5]))
    if image is None:
        image = gal.drawKImage(dtype=dtype, nx=256, ny=256)
    else:
        image = gal._drawKImage(image)
    return image
Exemple #5
0
    def _resid(self, params, star, convert_func):
        """Residual function to use with least_squares.

        Essentially `chi` from `chisq`, but not summed over pixels yet.

        :param params:          A numpy array of model parameters.
        :param star:            A Star instance.
        :param convert_func:    An optional function to apply to the profile being fit before
                                drawing it onto the image.  This is used by composite PSFs to
                                isolate the effect of just this model component.

        :returns: `chi` as a flattened numpy array.
        """
        image, weight, image_pos = star.data.getImage()
        flux, du, dv, scale, g1, g2 = params

        # Make sure the shear is sane.
        g = g1 + 1j * g2
        if np.abs(g) >= 1.:
            # Return "infinity"
            return np.ones_like(image.array.ravel()) * 1.e300

        # We shear/dilate/shift the profile as follows.
        #    prof = self.gsobj.dilate(scale).shear(g1=g1, g2=g2).shift(du, dv) * flux
        # However, it is a bit faster to do all these operations at once to avoid some superfluous
        # calculations that GalSim does for each of these steps when done separately.
        jac = galsim._Shear(g).getMatrix()
        jac[:, :] *= scale
        flux /= scale**2
        prof = galsim._Transform(self.gsobj,
                                 jac,
                                 offset=(du, dv),
                                 flux_ratio=flux)

        # Equivalent to galsim.Image(image, dtype=float), but without the sanity checks.
        model_image = galsim._Image(np.empty_like(image.array, dtype=float),
                                    image.bounds, image.wcs)

        if convert_func is not None:
            prof = convert_func(prof)

        prof.drawImage(model_image, method=self._method, center=image_pos)

        # Caculate sqrt(weight) * (model_image - image) in place for efficiency.
        model_image.array[:, :] -= image.array
        model_image.array[:, :] *= np.sqrt(weight.array)
        return model_image.array.ravel()
Exemple #6
0
    def _lmfit_resid(self, lmparams, star):
        """Residual function to use with lmfit.  Essentially `chi` from `chisq`, but not summed
        over pixels yet.

        :param lmparams:  An lmfit.Parameters() instance.  The model.
        :param star:    A Star instance.  The data.

        :returns: `chi` as a flattened numpy array.
        """
        import galsim
        image, weight, image_pos = star.data.getImage()
        flux, du, dv, scale, g1, g2 = lmparams.valuesdict().values()
        # Fit du and dv regardless of force_model_center.  The difference is whether the fit
        # value is recorded (force_model_center=False) or discarded (force_model_center=True).

        # We shear/dilate/shift the profile as follows.
        #    prof = self.gsobj.dilate(scale).shear(g1=g1, g2=g2).shift(du, dv) * flux
        # However, it is a bit faster to do all these operations at once to avoid some superfluous
        # calculations that GalSim does for each of these steps when done separately.
        jac = galsim._Shear(g1 + 1j * g2).getMatrix()
        jac[:, :] *= scale
        flux /= scale**2
        if galsim.__version__ >= '2.0':
            prof = galsim._Transform(self.gsobj,
                                     jac.ravel(),
                                     offset=galsim.PositionD(du, dv),
                                     flux_ratio=flux)
        else:
            prof = galsim._Transform(self.gsobj,
                                     *jac.ravel(),
                                     offset=galsim.PositionD(du, dv),
                                     flux_ratio=flux)

        # Equivalent to galsim.Image(image, dtype=float), but without the sanity checks.
        model_image = galsim._Image(np.empty_like(image.array, dtype=float),
                                    image.bounds, image.wcs)
        prof.drawImage(model_image,
                       method=self._method,
                       offset=(image_pos - model_image.true_center))

        # Caculate sqrt(weight) * (model_image - image) in place for efficiency.
        model_image.array[:, :] -= image.array
        model_image.array[:, :] *= np.sqrt(weight.array)
        return model_image.array.ravel()
Exemple #7
0
    def _lmfit_resid(self, lmparams, star):
        """Residual function to use with lmfit.  Essentially `chi` from `chisq`, but not summed
        over pixels yet.

        :param lmparams:  An lmfit.Parameters() instance.  The model.
        :param star:    A Star instance.  The data.

        :returns: `chi` as a flattened numpy array.
        """
        import galsim
        image, weight, image_pos = star.data.getImage()
        flux, du, dv, scale, g1, g2 = lmparams.valuesdict().values()
        # Fit du and dv regardless of force_model_center.  The difference is whether the fit
        # value is recorded (force_model_center=False) or discarded (force_model_center=True).

        # We shear/dilate/shift the profile as follows.
        #    prof = self.gsobj.dilate(scale).shear(g1=g1, g2=g2).shift(du, dv) * flux
        # However, it is a bit faster to do all these operations at once to avoid some superfluous
        # calculations that GalSim does for each of these steps when done separately.
        jac = galsim._Shear(g1 + 1j*g2).getMatrix()
        jac[:,:] *= scale
        flux /= scale**2
        if galsim.__version__ >= '2.0':
            prof = galsim._Transform(self.gsobj, jac.ravel(), offset=galsim.PositionD(du,dv),
                                     flux_ratio=flux)
        else:
            prof = galsim._Transform(self.gsobj, *jac.ravel(), offset=galsim.PositionD(du,dv),
                                     flux_ratio=flux)

        # Equivalent to galsim.Image(image, dtype=float), but without the sanity checks.
        model_image = galsim._Image(np.empty_like(image.array, dtype=float),
                                    image.bounds, image.wcs)
        prof.drawImage(model_image, method=self._method,
                       offset=(image_pos - model_image.true_center))

        # Caculate sqrt(weight) * (model_image - image) in place for efficiency.
        model_image.array[:,:] -= image.array
        model_image.array[:,:] *= np.sqrt(weight.array)
        return model_image.array.ravel()
Exemple #8
0
def test_shear_initialization():
    """Test that Shears can be initialized in a variety of ways and get the expected results."""
    # first make an empty Shear and make sure that it has zeros in the right places
    s = galsim.Shear()
    vec = [s.g, s.g1, s.g2, s.e, s.e1, s.e2, s.eta, s.esq]
    vec_ideal = np.zeros(len(vec))
    np.testing.assert_array_almost_equal(
        vec,
        vec_ideal,
        decimal=decimal,
        err_msg="Incorrectly initialized empty shear")
    # now loop over shear values and ways of initializing
    for ind in range(n_shear):
        # initialize with reduced shear components
        s = galsim.Shear(g1=g1[ind], g2=g2[ind])
        all_shear_vals(s, ind)
        if g1[ind] == 0.0:
            s = galsim.Shear(g2=g2[ind])
            all_shear_vals(s, ind)
        if g2[ind] == 0.0:
            s = galsim.Shear(g1=g1[ind])
            all_shear_vals(s, ind)
        # initialize with distortion components
        s = galsim.Shear(e1=e1[ind], e2=e2[ind])
        all_shear_vals(s, ind)
        if e1[ind] == 0.0:
            s = galsim.Shear(e2=e2[ind])
            all_shear_vals(s, ind)
        if e2[ind] == 0.0:
            s = galsim.Shear(e1=e1[ind])
            all_shear_vals(s, ind)
        # initialize with conformal shear components
        s = galsim.Shear(eta1=eta1[ind], eta2=eta2[ind])
        all_shear_vals(s, ind)
        if eta1[ind] == 0.0:
            s = galsim.Shear(eta2=eta2[ind])
            all_shear_vals(s, ind)
        if eta2[ind] == 0.0:
            s = galsim.Shear(eta1=eta1[ind])
            all_shear_vals(s, ind)
        # initialize with axis ratio and position angle
        s = galsim.Shear(q=q[ind], beta=beta[ind] * galsim.radians)
        all_shear_vals(s, ind)
        # initialize with reduced shear and position angle
        s = galsim.Shear(g=g[ind], beta=beta[ind] * galsim.radians)
        all_shear_vals(s, ind)
        # initialize with distortion and position angle
        s = galsim.Shear(e=e[ind], beta=beta[ind] * galsim.radians)
        all_shear_vals(s, ind)
        # initialize with conformal shear and position angle
        s = galsim.Shear(eta=eta[ind], beta=beta[ind] * galsim.radians)
        all_shear_vals(s, ind)
        # initialize with a complex number g1 + 1j * g2
        s = galsim.Shear(g1[ind] + 1j * g2[ind])
        all_shear_vals(s, ind)
        s = galsim._Shear(g1[ind] + 1j * g2[ind])
        all_shear_vals(s, ind)
        # which should also be the value of s.shear
        s2 = galsim.Shear(s.shear)
        all_shear_vals(s2, ind)

        # Check picklability
        do_pickle(s)

    # finally check some examples of invalid initializations for Shear
    try:
        np.testing.assert_raises(TypeError, galsim.Shear, 0.3)
        np.testing.assert_raises(TypeError, galsim.Shear, 0.3, 0.3)
        np.testing.assert_raises(TypeError, galsim.Shear, g1=0.3, e2=0.2)
        np.testing.assert_raises(TypeError,
                                 galsim.Shear,
                                 eta1=0.3,
                                 beta=0. * galsim.degrees)
        np.testing.assert_raises(TypeError, galsim.Shear, q=0.3)
        np.testing.assert_raises(ValueError,
                                 galsim.Shear,
                                 q=1.3,
                                 beta=0. * galsim.degrees)
        np.testing.assert_raises(ValueError, galsim.Shear, g1=0.9, g2=0.6)
        np.testing.assert_raises(ValueError,
                                 galsim.Shear,
                                 e=-1.3,
                                 beta=0. * galsim.radians)
        np.testing.assert_raises(ValueError,
                                 galsim.Shear,
                                 e=1.3,
                                 beta=0. * galsim.radians)
        np.testing.assert_raises(ValueError, galsim.Shear, e1=0.7, e2=0.9)
        np.testing.assert_raises(TypeError, galsim.Shear, g=0.5)
        np.testing.assert_raises(TypeError, galsim.Shear, e=0.5)
        np.testing.assert_raises(TypeError, galsim.Shear, eta=0.5)
        np.testing.assert_raises(ValueError,
                                 galsim.Shear,
                                 eta=-0.5,
                                 beta=0. * galsim.radians)
        np.testing.assert_raises(ValueError,
                                 galsim.Shear,
                                 g=1.3,
                                 beta=0. * galsim.radians)
        np.testing.assert_raises(ValueError,
                                 galsim.Shear,
                                 g=-0.3,
                                 beta=0. * galsim.radians)
        np.testing.assert_raises(TypeError, galsim.Shear, e=0.3, beta=0.)
        np.testing.assert_raises(TypeError, galsim.Shear, eta=0.3, beta=0.)
        np.testing.assert_raises(TypeError, galsim.Shear, randomkwarg=0.1)
        np.testing.assert_raises(TypeError,
                                 galsim.Shear,
                                 g1=0.1,
                                 randomkwarg=0.1)
        np.testing.assert_raises(TypeError, galsim.Shear, g1=0.1, e1=0.1)
        np.testing.assert_raises(TypeError, galsim.Shear, g1=0.1, e=0.1)
        np.testing.assert_raises(TypeError, galsim.Shear, g1=0.1, g=0.1)
        np.testing.assert_raises(TypeError,
                                 galsim.Shear,
                                 beta=45.0 * galsim.degrees)
        np.testing.assert_raises(TypeError,
                                 galsim.Shear,
                                 beta=45.0 * galsim.degrees,
                                 g=0.3,
                                 eta=0.1)
        np.testing.assert_raises(TypeError, galsim.Shear, beta=45.0, g=0.3)
        np.testing.assert_raises(TypeError, galsim.Shear, q=0.1, beta=0.)
    except ImportError:
        print('The assert_raises tests require nose')