Exemple #1
0
def test_real_galaxy_ideal():
    """Test accuracy of various calculations with fake Gaussian RealGalaxy vs. ideal expectations"""
    import time
    t1 = time.time()
    # read in faked Gaussian RealGalaxy from file
    rgc = galsim.RealGalaxyCatalog(catalog_file, image_dir)
    rg = galsim.RealGalaxy(rgc, index = ind_fake)

    ## for the generation of the ideal right answer, we need to add the intrinsic shape of the
    ## galaxy and the lensing shear using the rule for addition of distortions which is ugly, but oh
    ## well:
    (d1, d2) = galsim.utilities.g1g2_to_e1e2(fake_gal_shear1, fake_gal_shear2)
    (d1app, d2app) = galsim.utilities.g1g2_to_e1e2(targ_applied_shear1, targ_applied_shear2)
    denom = 1.0 + d1*d1app + d2*d2app
    dapp_sq = d1app**2 + d2app**2
    d1tot = (d1 + d1app + d2app/dapp_sq*(1.0 - np.sqrt(1.0-dapp_sq))*(d2*d1app - d1*d2app))/denom
    d2tot = (d2 + d2app + d1app/dapp_sq*(1.0 - np.sqrt(1.0-dapp_sq))*(d1*d2app - d2*d1app))/denom

    # convolve with a range of Gaussians, with and without shear (note, for this test all the
    # original and target ePSFs are Gaussian - there's no separate pixel response so that everything
    # can be calculated analytically)
    for tps in targ_pixel_scale:
        for tpf in targ_PSF_fwhm:
            for tps1 in targ_PSF_shear1:
                for tps2 in targ_PSF_shear2:
                    print 'tps,tpf,tps1,tps2 = ',tps,tpf,tps1,tps2
                    # make target PSF
                    targ_PSF = galsim.Gaussian(fwhm = tpf)
                    targ_PSF.applyShear(g1=tps1, g2=tps2)
                    # simulate image
                    sim_image = galsim.simReal(
                            rg, targ_PSF, tps, 
                            g1 = targ_applied_shear1, g2 = targ_applied_shear2,
                            rand_rotate = False, target_flux = fake_gal_flux)
                    # galaxy sigma, in units of pixels on the final image
                    sigma_ideal = (fake_gal_fwhm/tps)*fwhm_to_sigma
                    # compute analytically the expected galaxy moments:
                    mxx_gal, myy_gal, mxy_gal = ellip_to_moments(d1tot, d2tot, sigma_ideal)
                    # compute analytically the expected PSF moments:
                    targ_PSF_e1, targ_PSF_e2 = galsim.utilities.g1g2_to_e1e2(tps1, tps2)
                    targ_PSF_sigma = (tpf/tps)*fwhm_to_sigma
                    mxx_PSF, myy_PSF, mxy_PSF = ellip_to_moments(
                            targ_PSF_e1, targ_PSF_e2, targ_PSF_sigma)
                    # get expected e1, e2, sigma for the PSF-convolved image
                    tot_e1, tot_e2, tot_sigma = moments_to_ellip(
                            mxx_gal+mxx_PSF, myy_gal+myy_PSF, mxy_gal+mxy_PSF)

                    # compare with images that are expected
                    expected_gaussian = galsim.Gaussian(
                            flux = fake_gal_flux, sigma = tps*tot_sigma)
                    expected_gaussian.applyShear(e1 = tot_e1, e2 = tot_e2)
                    expected_image = galsim.ImageD(
                            sim_image.array.shape[0], sim_image.array.shape[1])
                    expected_gaussian.draw(expected_image, dx = tps)
                    printval(expected_image,sim_image)
                    np.testing.assert_array_almost_equal(
                        sim_image.array, expected_image.array, decimal = 3,
                        err_msg = "Error in comparison of ideal Gaussian RealGalaxy calculations")
    t2 = time.time()
    print 'time for %s = %.2f'%(funcname(),t2-t1)
Exemple #2
0
def test_real_galaxy_saved():
    """Test accuracy of various calculations with real RealGalaxy vs. stored SHERA result"""
    import time
    t1 = time.time()
    # read in real RealGalaxy from file
    rgc = galsim.RealGalaxyCatalog(catalog_file, image_dir)
    rg = galsim.RealGalaxy(rgc, index=ind_real)

    # read in expected result for some shear
    shera_image = galsim.fits.read(shera_file)
    shera_target_PSF_image = galsim.fits.read(shera_target_PSF_file)

    # simulate the same galaxy with GalSim
    sim_image = galsim.simReal(rg,
                               shera_target_PSF_image,
                               shera_target_pixel_scale,
                               g1=targ_applied_shear1,
                               g2=targ_applied_shear2,
                               rand_rotate=False,
                               target_flux=shera_target_flux)

    # there are centroid issues when comparing Shera vs. SBProfile outputs, so compare 2nd moments
    # instead of images
    sbp_res = sim_image.FindAdaptiveMom()
    shera_res = shera_image.FindAdaptiveMom()

    np.testing.assert_almost_equal(
        sbp_res.observed_shape.e1,
        shera_res.observed_shape.e1,
        2,
        err_msg="Error in comparison with SHERA result: e1")
    np.testing.assert_almost_equal(
        sbp_res.observed_shape.e2,
        shera_res.observed_shape.e2,
        2,
        err_msg="Error in comparison with SHERA result: e2")
    np.testing.assert_almost_equal(
        sbp_res.moments_sigma,
        shera_res.moments_sigma,
        2,
        err_msg="Error in comparison with SHERA result: sigma")

    # Check picklability
    do_pickle(
        rgc, lambda x: [
            x.getGal(ind_real),
            x.getPSF(ind_real),
            x.getNoiseProperties(ind_real)
        ])
    do_pickle(
        rgc,
        lambda x: drawNoise(x.getNoise(ind_real, rng=galsim.BaseDeviate(123))))
    do_pickle(
        rg, lambda x: galsim.Convolve([x, galsim.Gaussian(sigma=1.7)]).
        drawImage(nx=20, ny=20, scale=0.7))
    do_pickle(rgc)
    do_pickle(rg)

    t2 = time.time()
    print 'time for %s = %.2f' % (funcname(), t2 - t1)
Exemple #3
0
def test_real_galaxy_saved():
    """Test accuracy of various calculations with real RealGalaxy vs. stored SHERA result"""
    import time
    t1 = time.time()
    # read in real RealGalaxy from file
    rgc = galsim.RealGalaxyCatalog(catalog_file, image_dir)
    rg = galsim.RealGalaxy(rgc, index = ind_real)

    # read in expected result for some shear
    shera_image = galsim.fits.read(shera_file)
    shera_target_PSF_image = galsim.fits.read(shera_target_PSF_file)

    # simulate the same galaxy with GalSim
    sim_image = galsim.simReal(rg, shera_target_PSF_image, shera_target_pixel_scale,
                               g1 = targ_applied_shear1, g2 = targ_applied_shear2,
                               rand_rotate = False, target_flux = shera_target_flux)

    # there are centroid issues when comparing Shera vs. SBProfile outputs, so compare 2nd moments
    # instead of images
    sbp_res = sim_image.FindAdaptiveMom()
    shera_res = shera_image.FindAdaptiveMom()

    np.testing.assert_almost_equal(sbp_res.observed_shape.e1,
                                   shera_res.observed_shape.e1, 2,
                                   err_msg = "Error in comparison with SHERA result: e1")
    np.testing.assert_almost_equal(sbp_res.observed_shape.e2,
                                   shera_res.observed_shape.e2, 2,
                                   err_msg = "Error in comparison with SHERA result: e2")
    np.testing.assert_almost_equal(sbp_res.moments_sigma, shera_res.moments_sigma, 2,
                                   err_msg = "Error in comparison with SHERA result: sigma")
    t2 = time.time()
    print 'time for %s = %.2f'%(funcname(),t2-t1)
Exemple #4
0
def test_real_galaxy_saved():
    """Test accuracy of various calculations with real RealGalaxy vs. stored SHERA result"""
    # read in real RealGalaxy from file
    #rgc = galsim.RealGalaxyCatalog(catalog_file, dir=image_dir)
    # This is an alternate way to give the directory -- as part of the catalog file name.
    full_catalog_file = os.path.join(image_dir, catalog_file)
    rgc = galsim.RealGalaxyCatalog(full_catalog_file)
    rg = galsim.RealGalaxy(rgc, index=ind_real)

    # read in expected result for some shear
    shera_image = galsim.fits.read(shera_file)
    shera_target_PSF_image = galsim.fits.read(shera_target_PSF_file)

    # simulate the same galaxy with GalSim
    sim_image = galsim.simReal(rg,
                               shera_target_PSF_image,
                               shera_target_pixel_scale,
                               g1=targ_applied_shear1,
                               g2=targ_applied_shear2,
                               rand_rotate=False,
                               target_flux=shera_target_flux)

    # there are centroid issues when comparing Shera vs. SBProfile outputs, so compare 2nd moments
    # instead of images
    sbp_res = sim_image.FindAdaptiveMom()
    shera_res = shera_image.FindAdaptiveMom()

    np.testing.assert_almost_equal(
        sbp_res.observed_shape.e1,
        shera_res.observed_shape.e1,
        2,
        err_msg="Error in comparison with SHERA result: e1")
    np.testing.assert_almost_equal(
        sbp_res.observed_shape.e2,
        shera_res.observed_shape.e2,
        2,
        err_msg="Error in comparison with SHERA result: e2")
    np.testing.assert_almost_equal(
        sbp_res.moments_sigma,
        shera_res.moments_sigma,
        2,
        err_msg="Error in comparison with SHERA result: sigma")

    check_basic(rg, "RealGalaxy", approx_maxsb=True)

    # Check picklability
    do_pickle(
        rgc, lambda x: [
            x.getGal(ind_real),
            x.getPSF(ind_real),
            x.getNoiseProperties(ind_real)
        ])
    do_pickle(
        rgc,
        lambda x: drawNoise(x.getNoise(ind_real, rng=galsim.BaseDeviate(123))))
    do_pickle(
        rg, lambda x: galsim.Convolve([x, galsim.Gaussian(sigma=1.7)]).
        drawImage(nx=20, ny=20, scale=0.7))
    do_pickle(rgc)
    do_pickle(rg)
Exemple #5
0
def test_real_galaxy_saved():
    """Test accuracy of various calculations with real RealGalaxy vs. stored SHERA result"""
    import time
    t1 = time.time()
    # read in real RealGalaxy from file
    #rgc = galsim.RealGalaxyCatalog(catalog_file, dir=image_dir)
    # This is an alternate way to give the directory -- as part of the catalog file name.
    full_catalog_file = os.path.join(image_dir,catalog_file)
    rgc = galsim.RealGalaxyCatalog(full_catalog_file)
    rg = galsim.RealGalaxy(rgc, index=ind_real)

    # read in expected result for some shear
    shera_image = galsim.fits.read(shera_file)
    shera_target_PSF_image = galsim.fits.read(shera_target_PSF_file)

    # simulate the same galaxy with GalSim
    sim_image = galsim.simReal(rg, shera_target_PSF_image, shera_target_pixel_scale,
                               g1 = targ_applied_shear1, g2 = targ_applied_shear2,
                               rand_rotate = False, target_flux = shera_target_flux)

    # there are centroid issues when comparing Shera vs. SBProfile outputs, so compare 2nd moments
    # instead of images
    sbp_res = sim_image.FindAdaptiveMom()
    shera_res = shera_image.FindAdaptiveMom()

    np.testing.assert_almost_equal(sbp_res.observed_shape.e1,
                                   shera_res.observed_shape.e1, 2,
                                   err_msg = "Error in comparison with SHERA result: e1")
    np.testing.assert_almost_equal(sbp_res.observed_shape.e2,
                                   shera_res.observed_shape.e2, 2,
                                   err_msg = "Error in comparison with SHERA result: e2")
    np.testing.assert_almost_equal(sbp_res.moments_sigma, shera_res.moments_sigma, 2,
                                   err_msg = "Error in comparison with SHERA result: sigma")

    # Check picklability
    do_pickle(rgc, lambda x: [ x.getGal(ind_real), x.getPSF(ind_real),
                               x.getNoiseProperties(ind_real) ])
    do_pickle(rgc, lambda x: drawNoise(x.getNoise(ind_real,rng=galsim.BaseDeviate(123))))
    do_pickle(rg, lambda x: galsim.Convolve([x,galsim.Gaussian(sigma=1.7)]).drawImage(
                                nx=20, ny=20, scale=0.7))
    do_pickle(rgc)
    do_pickle(rg)

    t2 = time.time()
    print 'time for %s = %.2f'%(funcname(),t2-t1)
Exemple #6
0
def test_real_galaxy_saved():
    """Test accuracy of various calculations with real RealGalaxy vs. stored SHERA result"""
    import time
    t1 = time.time()
    # read in real RealGalaxy from file
    rgc = galsim.RealGalaxyCatalog(catalog_file, image_dir)
    rg = galsim.RealGalaxy(rgc, index=ind_real)

    # read in expected result for some shear
    shera_image = galsim.fits.read(shera_file)
    shera_target_PSF_image = galsim.fits.read(shera_target_PSF_file)

    # simulate the same galaxy with GalSim
    sim_image = galsim.simReal(rg,
                               shera_target_PSF_image,
                               shera_target_pixel_scale,
                               g1=targ_applied_shear1,
                               g2=targ_applied_shear2,
                               rand_rotate=False,
                               target_flux=shera_target_flux)

    # there are centroid issues when comparing Shera vs. SBProfile outputs, so compare 2nd moments
    # instead of images
    sbp_res = sim_image.FindAdaptiveMom()
    shera_res = shera_image.FindAdaptiveMom()

    np.testing.assert_almost_equal(
        sbp_res.observed_shape.e1,
        shera_res.observed_shape.e1,
        2,
        err_msg="Error in comparison with SHERA result: e1")
    np.testing.assert_almost_equal(
        sbp_res.observed_shape.e2,
        shera_res.observed_shape.e2,
        2,
        err_msg="Error in comparison with SHERA result: e2")
    np.testing.assert_almost_equal(
        sbp_res.moments_sigma,
        shera_res.moments_sigma,
        2,
        err_msg="Error in comparison with SHERA result: sigma")
    t2 = time.time()
    print 'time for %s = %.2f' % (funcname(), t2 - t1)
Exemple #7
0
def test_real_galaxy_ideal():
    """Test accuracy of various calculations with fake Gaussian RealGalaxy vs. ideal expectations"""
    import time
    t1 = time.time()
    # read in faked Gaussian RealGalaxy from file
    rgc = galsim.RealGalaxyCatalog(catalog_file, dir=image_dir)
    rg = galsim.RealGalaxy(rgc, index=ind_fake)
    # as a side note, make sure it behaves okay given a legit RNG and a bad RNG
    # or when trying to specify the galaxy too many ways
    rg_1 = galsim.RealGalaxy(rgc, index = ind_fake, rng = galsim.BaseDeviate(1234))
    rg_2 = galsim.RealGalaxy(rgc, random=True)
    try:
        np.testing.assert_raises(TypeError, galsim.RealGalaxy, rgc, index=ind_fake, rng='foo')
        np.testing.assert_raises(AttributeError, galsim.RealGalaxy, rgc, index=ind_fake, id=0)
        np.testing.assert_raises(AttributeError, galsim.RealGalaxy, rgc, index=ind_fake, random=True)
        np.testing.assert_raises(AttributeError, galsim.RealGalaxy, rgc, id=0, random=True)
        np.testing.assert_raises(AttributeError, galsim.RealGalaxy, rgc)
    except ImportError:
        print 'The assert_raises tests require nose'

    do_pickle(rgc, lambda x: [ x.getGal(ind_fake), x.getPSF(ind_fake),
                               x.getNoiseProperties(ind_fake) ])
    do_pickle(rgc, lambda x: drawNoise(x.getNoise(ind_fake,rng=galsim.BaseDeviate(123))))
    do_pickle(rgc)
    do_pickle(rg, lambda x: [ x.gal_image, x.psf_image, repr(x.noise),
                              x.original_psf.flux, x.original_gal.flux, x.flux ])
    do_pickle(rg, lambda x: x.drawImage(nx=20, ny=20, scale=0.7))
    do_pickle(rg_1, lambda x: x.drawImage(nx=20, ny=20, scale=0.7))
    do_pickle(rg)
    do_pickle(rg_1)

    ## for the generation of the ideal right answer, we need to add the intrinsic shape of the
    ## galaxy and the lensing shear using the rule for addition of distortions which is ugly, but oh
    ## well:
    (d1, d2) = galsim.utilities.g1g2_to_e1e2(fake_gal_shear1, fake_gal_shear2)
    (d1app, d2app) = galsim.utilities.g1g2_to_e1e2(targ_applied_shear1, targ_applied_shear2)
    denom = 1.0 + d1*d1app + d2*d2app
    dapp_sq = d1app**2 + d2app**2
    d1tot = (d1 + d1app + d2app/dapp_sq*(1.0 - np.sqrt(1.0-dapp_sq))*(d2*d1app - d1*d2app))/denom
    d2tot = (d2 + d2app + d1app/dapp_sq*(1.0 - np.sqrt(1.0-dapp_sq))*(d1*d2app - d2*d1app))/denom

    # convolve with a range of Gaussians, with and without shear (note, for this test all the
    # original and target ePSFs are Gaussian - there's no separate pixel response so that everything
    # can be calculated analytically)
    for tps in targ_pixel_scale:
        for tpf in targ_PSF_fwhm:
            for tps1 in targ_PSF_shear1:
                for tps2 in targ_PSF_shear2:
                    print 'tps,tpf,tps1,tps2 = ',tps,tpf,tps1,tps2
                    # make target PSF
                    targ_PSF = galsim.Gaussian(fwhm = tpf).shear(g1=tps1, g2=tps2)
                    # simulate image
                    sim_image = galsim.simReal(
                            rg, targ_PSF, tps,
                            g1 = targ_applied_shear1, g2 = targ_applied_shear2,
                            rand_rotate = False, target_flux = fake_gal_flux)
                    # galaxy sigma, in units of pixels on the final image
                    sigma_ideal = (fake_gal_fwhm/tps)*fwhm_to_sigma
                    # compute analytically the expected galaxy moments:
                    mxx_gal, myy_gal, mxy_gal = ellip_to_moments(d1tot, d2tot, sigma_ideal)
                    # compute analytically the expected PSF moments:
                    targ_PSF_e1, targ_PSF_e2 = galsim.utilities.g1g2_to_e1e2(tps1, tps2)
                    targ_PSF_sigma = (tpf/tps)*fwhm_to_sigma
                    mxx_PSF, myy_PSF, mxy_PSF = ellip_to_moments(
                            targ_PSF_e1, targ_PSF_e2, targ_PSF_sigma)
                    # get expected e1, e2, sigma for the PSF-convolved image
                    tot_e1, tot_e2, tot_sigma = moments_to_ellip(
                            mxx_gal+mxx_PSF, myy_gal+myy_PSF, mxy_gal+mxy_PSF)

                    # compare with images that are expected
                    expected_gaussian = galsim.Gaussian(
                            flux = fake_gal_flux, sigma = tps*tot_sigma)
                    expected_gaussian = expected_gaussian.shear(e1 = tot_e1, e2 = tot_e2)
                    expected_image = galsim.ImageD(
                            sim_image.array.shape[0], sim_image.array.shape[1])
                    expected_gaussian.drawImage(expected_image, scale=tps, method='no_pixel')
                    printval(expected_image,sim_image)
                    np.testing.assert_array_almost_equal(
                        sim_image.array, expected_image.array, decimal = 3,
                        err_msg = "Error in comparison of ideal Gaussian RealGalaxy calculations")

    t2 = time.time()
    print 'time for %s = %.2f'%(funcname(),t2-t1)
Exemple #8
0
def test_real_galaxy_ideal():
    """Test accuracy of various calculations with fake Gaussian RealGalaxy vs. ideal expectations"""
    import time
    t1 = time.time()
    # read in faked Gaussian RealGalaxy from file
    rgc = galsim.RealGalaxyCatalog(catalog_file, image_dir)
    rg = galsim.RealGalaxy(rgc, index=ind_fake)

    ## for the generation of the ideal right answer, we need to add the intrinsic shape of the
    ## galaxy and the lensing shear using the rule for addition of distortions which is ugly, but oh
    ## well:
    (d1, d2) = galsim.utilities.g1g2_to_e1e2(fake_gal_shear1, fake_gal_shear2)
    (d1app, d2app) = galsim.utilities.g1g2_to_e1e2(targ_applied_shear1,
                                                   targ_applied_shear2)
    denom = 1.0 + d1 * d1app + d2 * d2app
    dapp_sq = d1app**2 + d2app**2
    d1tot = (d1 + d1app + d2app / dapp_sq * (1.0 - np.sqrt(1.0 - dapp_sq)) *
             (d2 * d1app - d1 * d2app)) / denom
    d2tot = (d2 + d2app + d1app / dapp_sq * (1.0 - np.sqrt(1.0 - dapp_sq)) *
             (d1 * d2app - d2 * d1app)) / denom

    # convolve with a range of Gaussians, with and without shear (note, for this test all the
    # original and target ePSFs are Gaussian - there's no separate pixel response so that everything
    # can be calculated analytically)
    for tps in targ_pixel_scale:
        for tpf in targ_PSF_fwhm:
            for tps1 in targ_PSF_shear1:
                for tps2 in targ_PSF_shear2:
                    print 'tps,tpf,tps1,tps2 = ', tps, tpf, tps1, tps2
                    # make target PSF
                    targ_PSF = galsim.Gaussian(fwhm=tpf)
                    targ_PSF.applyShear(g1=tps1, g2=tps2)
                    # simulate image
                    sim_image = galsim.simReal(rg,
                                               targ_PSF,
                                               tps,
                                               g1=targ_applied_shear1,
                                               g2=targ_applied_shear2,
                                               rand_rotate=False,
                                               target_flux=fake_gal_flux)
                    # galaxy sigma, in units of pixels on the final image
                    sigma_ideal = (fake_gal_fwhm / tps) * fwhm_to_sigma
                    # compute analytically the expected galaxy moments:
                    mxx_gal, myy_gal, mxy_gal = ellip_to_moments(
                        d1tot, d2tot, sigma_ideal)
                    # compute analytically the expected PSF moments:
                    targ_PSF_e1, targ_PSF_e2 = galsim.utilities.g1g2_to_e1e2(
                        tps1, tps2)
                    targ_PSF_sigma = (tpf / tps) * fwhm_to_sigma
                    mxx_PSF, myy_PSF, mxy_PSF = ellip_to_moments(
                        targ_PSF_e1, targ_PSF_e2, targ_PSF_sigma)
                    # get expected e1, e2, sigma for the PSF-convolved image
                    tot_e1, tot_e2, tot_sigma = moments_to_ellip(
                        mxx_gal + mxx_PSF, myy_gal + myy_PSF,
                        mxy_gal + mxy_PSF)

                    # compare with images that are expected
                    expected_gaussian = galsim.Gaussian(flux=fake_gal_flux,
                                                        sigma=tps * tot_sigma)
                    expected_gaussian.applyShear(e1=tot_e1, e2=tot_e2)
                    expected_image = galsim.ImageD(sim_image.array.shape[0],
                                                   sim_image.array.shape[1])
                    expected_gaussian.draw(expected_image, dx=tps)
                    printval(expected_image, sim_image)
                    np.testing.assert_array_almost_equal(
                        sim_image.array,
                        expected_image.array,
                        decimal=3,
                        err_msg=
                        "Error in comparison of ideal Gaussian RealGalaxy calculations"
                    )
    t2 = time.time()
    print 'time for %s = %.2f' % (funcname(), t2 - t1)
Exemple #9
0
good_psf_outer = galsim.Gaussian(flux=1.0-central_psf_amp,
                                 fwhm=outer_fwhm_mult*good_psf_central_fwhm)
good_psf = good_psf_inner + good_psf_outer

bad_psf_inner = galsim.Gaussian(flux=central_psf_amp, fwhm=bad_psf_central_fwhm)
bad_psf_outer = galsim.Gaussian(flux=1.0-central_psf_amp, fwhm=outer_fwhm_mult*bad_psf_central_fwhm)
bad_psf = bad_psf_inner + bad_psf_outer

pixel = galsim.Pixel(xw=pixel_scale, yw=pixel_scale)
good_epsf = galsim.Convolve(good_psf, pixel)
bad_epsf = galsim.Convolve(bad_psf, pixel)

# simulate some high-quality ground-based data, e.g., Subaru/CFHT with good seeing; with and without
# shear
print "Simulating unsheared galaxy in good seeing..."
sim_image_good_noshear = galsim.simReal(real_galaxy, good_epsf, pixel_scale, rand_rotate=False)
print "Simulating sheared galaxy in good seeing..."
sim_image_good_shear = galsim.simReal(real_galaxy, good_epsf, pixel_scale, g1=g1, g2=g2,
                                      rand_rotate=False)

# simulate some poor-quality ground-based data, e.g., a bad night for SDSS; with and without shear
print "Simulating unsheared galaxy in bad seeing..."
sim_image_bad_noshear = galsim.simReal(real_galaxy, bad_epsf, pixel_scale, rand_rotate=False)
print "Simulating sheared galaxy in bad seeing..."
sim_image_bad_shear = galsim.simReal(real_galaxy, bad_epsf, pixel_scale, g1=g1, g2=g2,
                                     rand_rotate=False)

# write to files: original galaxy, original PSF, 2 target PSFs, 4 simulated images
# note: will differ each time it is run, because we chose a random image
print "Drawing images and writing to files!"
Exemple #10
0
bad_psf_inner = galsim.Gaussian(flux=central_psf_amp,
                                fwhm=bad_psf_central_fwhm)
bad_psf_outer = galsim.Gaussian(flux=1.0 - central_psf_amp,
                                fwhm=outer_fwhm_mult * bad_psf_central_fwhm)
bad_psf = bad_psf_inner + bad_psf_outer

pixel = galsim.Pixel(xw=pixel_scale, yw=pixel_scale)
good_epsf = galsim.Convolve(good_psf, pixel)
bad_epsf = galsim.Convolve(bad_psf, pixel)

# simulate some high-quality ground-based data, e.g., Subaru/CFHT with good seeing; with and without
# shear
print "Simulating unsheared galaxy in good seeing..."
sim_image_good_noshear = galsim.simReal(real_galaxy,
                                        good_epsf,
                                        pixel_scale,
                                        rand_rotate=False)
print "Simulating sheared galaxy in good seeing..."
sim_image_good_shear = galsim.simReal(real_galaxy,
                                      good_epsf,
                                      pixel_scale,
                                      g1=g1,
                                      g2=g2,
                                      rand_rotate=False)

# simulate some poor-quality ground-based data, e.g., a bad night for SDSS; with and without shear
print "Simulating unsheared galaxy in bad seeing..."
sim_image_bad_noshear = galsim.simReal(real_galaxy,
                                       bad_epsf,
                                       pixel_scale,
                                       rand_rotate=False)