import numpy as np import os import time # os.environ["SDL_VIDEODRIVER"] = "dummy" from collections import deque from keras.models import Model, load_model, Sequential, load_model from keras.layers import Input, Dense, Conv2D, Flatten from keras.optimizers import Adam, RMSprop import time import keras import matplotlib.pyplot as plt from skimage.transform import resize from skimage.color import rgb2gray env = GameEnv() stateSize = len(env.reset()) fakeState = env.reset() print(stateSize) env.getGameState() # PREPROCESSING HYPERPARAMETERS stack_size = 8 # Number of frames stacked # MODEL HYPERPARAMETERS action_size = 4 # 4 possible actions # Initialize deque with zero-images one array for each image stacked_frames = deque( [np.zeros((stateSize), dtype=np.int) for i in range(stack_size)], maxlen=stack_size) def stack_frames(stacked_frames, state, is_new_episode):
from game import GameEnv import random env = GameEnv(1 / 60) env.stepReward = 0 env.playerShotReward = 0 env.enemyShotReward = 0 env.missedShotReward = 0 env.allDeadReward = 0 env.invasionReward = 0 env.bottomReward = 0 env.underReward = 0 env.anchorReward = 0 env.cornerReward = -0.001 env.reset() actions = [i for i in range(4)] done = False # print(env.reset()) env.loop() def randMove(): done = False while not done: state, reward, done, win = env.step(random.sample(actions, 1)[0]) # for i in range(4): # env.reset() # randMove()