Exemple #1
0
async def test_nash_failure():
    """With regret thresh of zero, nash will fail"""
    game = gamegen.sym_2p2s_known_eq(1 / 3)
    sched = gamesched.gamesched(game)
    eqa = await innerloop.inner_loop(schedgame.schedgame(sched),
                                     regret_thresh=0)
    assert not eqa.size
Exemple #2
0
def generate_games(num):  # pylint: disable=too-many-branches
    """Produce num random games per type"""
    np.random.seed(0)
    with open(path.join(_DIR, 'example_games', 'hard_nash.json')) as fil:
        yield 'hard', gamereader.load(fil).normalize()
    with open(path.join(_DIR, 'example_games', '2x2x2.nfg')) as fil:
        yield 'gambit', gamereader.load(fil).normalize()
    for _ in range(num):
        yield 'random', gamegen.game(*random_small()).normalize()
    for _ in range(num):
        strats = np.random.randint(2, 5, np.random.randint(2, 4))
        yield 'covariant', gamegen.covariant_game(strats).normalize()
    for _ in range(num):
        strats = np.random.randint(2, 5, 2)
        yield 'zero sum', gamegen.two_player_zero_sum_game(strats).normalize()
    for _ in range(num):
        yield 'prisoners', gamegen.prisoners_dilemma().normalize()
    for _ in range(num):
        yield 'chicken', gamegen.sym_2p2s_game(0, 3, 1, 2).normalize()
    for _ in range(num):
        prob = np.random.random()
        yield 'mix', gamegen.sym_2p2s_known_eq(prob).normalize()
    for _ in range(num):
        strats = np.random.randint(2, 4)
        plays = np.random.randint(2, 4)
        yield 'polymatrix', gamegen.polymatrix_game(plays, strats).normalize()
    for _ in range(num):
        wins = np.random.random(3) + .5
        loss = -np.random.random(3) - .5
        yield 'roshambo', gamegen.rock_paper_scissors(wins, loss).normalize()
    yield 'shapley easy', gamegen.rock_paper_scissors(win=2).normalize()
    yield 'shapley normal', gamegen.rock_paper_scissors(win=1).normalize()
    yield 'shapley hard', gamegen.rock_paper_scissors(win=0.5).normalize()
    for _ in range(num):
        yield 'normagg small', gamegen.normal_aggfn(*random_agg_small())
    for _ in range(num):
        yield 'polyagg small', gamegen.poly_aggfn(*random_agg_small())
    for _ in range(num):
        yield 'sineagg small', gamegen.sine_aggfn(*random_agg_small())
    for _ in range(num):
        facs = np.random.randint(2, 6)
        req = np.random.randint(1, facs)
        players = np.random.randint(2, 11)
        yield 'congestion', gamegen.congestion(players, facs, req)
    for _ in range(num):
        strats = np.random.randint(2, 6)
        players = np.random.randint(2, 11)
        yield 'local effect', gamegen.local_effect(players, strats)
    for _ in range(num):
        yield 'normagg large', gamegen.normal_aggfn(*random_agg_large())
    for _ in range(num):
        yield 'polyagg large', gamegen.poly_aggfn(*random_agg_large())
    for _ in range(num):
        yield 'sineagg large', gamegen.sine_aggfn(*random_agg_large())
    for _ in range(num):
        agg = gamegen.sine_aggfn(*random_agg_small())
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', UserWarning)
            yield 'rbf', learning.rbfgame_train(agg)
Exemple #3
0
def test_old_nash():
    """Test old nash functions appropriately"""
    prob = 1 / np.sqrt(2)
    game = gamegen.sym_2p2s_known_eq(prob)
    eqa = nash.mixed_nash(game, processes=2)
    assert eqa.shape == (1, 2)
    eqm, = eqa
    assert np.allclose(eqm, [prob, 1 - prob], atol=1e-3)
Exemple #4
0
def test_mixed_equilibria():
    """Test that mixed equilibria works for easy case"""
    prob = 1 / np.sqrt(2)
    game = gamegen.sym_2p2s_known_eq(prob)
    eqa = nash.mixed_equilibria(game, processes=1)
    assert eqa.shape == (1, 2)
    eqm, = eqa
    assert np.allclose(eqm, [prob, 1 - prob], atol=1e-3)
Exemple #5
0
def test_mixed_known_eq(methods, eq_prob):
    game = gamegen.sym_2p2s_known_eq(eq_prob)
    eqa = nash.mixed_nash(game, processes=1, **methods)
    assert eqa.shape[0] >= 1, "didn't find equilibrium"
    expected = [eq_prob, 1 - eq_prob]
    assert np.isclose(eqa, expected, atol=1e-3, rtol=1e-3).all(1).any(), \
        "didn't find correct equilibrium {} instead of {}".format(
            eqa, expected)
Exemple #6
0
def test_optimization_stable_point(eq_prob):
    game = gamegen.sym_2p2s_known_eq(eq_prob)
    opt = nash.RegretOptimizer(game)
    val, grad = opt.grad(np.array([eq_prob, 1 - eq_prob]), 1)
    assert np.isclose(val, 0), \
        "value at equilibrium was not close to zero: {}".format(val)
    assert np.allclose(grad, 0), \
        "grad at equilibrium was not close to zero: {}".format(grad)
Exemple #7
0
def test_old_nash_at_least_one():
    """Test old nash functions appropriately"""
    prob = 1 / np.sqrt(2)
    game = gamegen.sym_2p2s_known_eq(prob)
    eqa = nash.mixed_nash(game, replicator=dict(max_iters=0), at_least_one=True)
    assert eqa.shape == (1, 2)
    eqm, = eqa
    assert np.allclose(eqm, [prob, 1 - prob], atol=1e-3)
Exemple #8
0
def test_old_nash():
    """Test old nash functions appropriately"""
    prob = 1 / np.sqrt(2)
    game = gamegen.sym_2p2s_known_eq(prob)
    eqa = nash.mixed_nash(game, processes=2)
    assert eqa.shape == (1, 2)
    eqm, = eqa
    assert np.allclose(eqm, [prob, 1 - prob], atol=1e-3)
Exemple #9
0
def test_mixed_equilibria():
    """Test that mixed equilibria works for easy case"""
    prob = 1 / np.sqrt(2)
    game = gamegen.sym_2p2s_known_eq(prob)
    eqa = nash.mixed_equilibria(game, processes=1)
    assert eqa.shape == (1, 2)
    eqm, = eqa
    assert np.allclose(eqm, [prob, 1 - prob], atol=1e-3)
Exemple #10
0
def test_old_nash_min_reg():
    """Test old nash functions appropriately"""
    prob = 1 / np.sqrt(2)
    game = gamegen.sym_2p2s_known_eq(prob)
    eqa = nash.mixed_nash(game, replicator=dict(max_iters=0), min_reg=True)
    assert eqa.shape == (1, 2)
    eqm, = eqa
    reg = regret.mixture_regret(game, eqm)
    assert reg > 1e-3
Exemple #11
0
def test_old_nash_min_reg():
    """Test old nash functions appropriately"""
    prob = 1 / np.sqrt(2)
    game = gamegen.sym_2p2s_known_eq(prob)
    eqa = nash.mixed_nash(game, replicator=dict(max_iters=0), min_reg=True)
    assert eqa.shape == (1, 2)
    eqm, = eqa
    reg = regret.mixture_regret(game, eqm)
    assert reg > 1e-3
Exemple #12
0
def test_old_nash_at_least_one():
    """Test old nash functions appropriately"""
    prob = 1 / np.sqrt(2)
    game = gamegen.sym_2p2s_known_eq(prob)
    eqa = nash.mixed_nash(game,
                          replicator=dict(max_iters=0),
                          at_least_one=True)
    assert eqa.shape == (1, 2)
    eqm, = eqa
    assert np.allclose(eqm, [prob, 1 - prob], atol=1e-3)
Exemple #13
0
async def test_innerloop_known_eq(eq_prob):
    """Test that inner loop finds known equilibria"""
    game = gamegen.sym_2p2s_known_eq(eq_prob)
    sched = gamesched.gamesched(game)
    eqa = await innerloop.inner_loop(schedgame.schedgame(sched),
                                     devs_by_role=True)
    assert eqa.size, "didn't find equilibrium"
    expected = [eq_prob, 1 - eq_prob]
    assert np.isclose(eqa, expected, atol=1e-3, rtol=1e-3).all(-1).any()
    verify_dist_thresh(eqa)
Exemple #14
0
def test_at_least_one():
    # Equilibrium of game is not at a starting point for equilibria finding
    game = gamegen.sym_2p2s_known_eq(1/math.sqrt(2))
    # Don't converge
    opts = {'max_iters': 0}
    eqa = nash.mixed_nash(game, processes=1, replicator=opts)
    assert eqa.size == 0, "found an equilibrium normally"
    eqa = nash.mixed_nash(game, replicator=opts, processes=1,
                          at_least_one=True)
    assert eqa.shape[0] == 1, "at_least_one didn't return anything"
Exemple #15
0
async def test_backups_used():
    """Test that outerloop uses backups

    Since restricted game size is 1, but the only equilibria has support two,
    this must use backups to find an equilibrium."""
    sgame = gamegen.sym_2p2s_known_eq(0.5)
    sched = gamesched.gamesched(sgame)
    eqa = await innerloop.inner_loop(schedgame.schedgame(sched),
                                     restricted_game_size=1)
    assert eqa.size, "didn't find equilibrium"
    expected = [0.5, 0.5]
    assert np.isclose(eqa, expected, atol=1e-3, rtol=1e-3).all(-1).any()
    verify_dist_thresh(eqa)
Exemple #16
0
def random_pairs():
    """Generate random pairs of games"""
    mix = gamegen.sym_2p2s_known_eq(.5)
    dom1 = paygame.game(
        2, 2, [[2, 0], [1, 1], [0, 2]], [[.1, 0], [.1, 0], [0, 0]])
    dom2 = paygame.game(
        2, 2, [[2, 0], [1, 1], [0, 2]], [[0, 0], [0, .1], [0, .1]])
    yield mix, dom1
    yield dom1, mix
    yield mix, dom2
    yield dom2, mix
    for base in tu.edge_games():
        play, strats = base.num_role_players, base.num_role_strats
        yield (gamegen.poly_aggfn(play, strats, 6),
               gamegen.poly_aggfn(play, strats, 6))
Exemple #17
0
def test_sym_2p2s_known_eq(eq_prob):
    game = gamegen.sym_2p2s_known_eq(eq_prob)
    assert game.is_complete(), "didn't generate a full game"
    assert game.is_symmetric(), \
        "didn't generate a symmetric game"
    assert np.all(2 == game.num_players), \
        "didn't generate correct number of strategies"
    assert np.all(2 == game.num_strategies), \
        "didn't generate correct number of strategies"
    eqm = np.array([eq_prob, 1 - eq_prob])
    reg = regret.mixture_regret(game, eqm)
    assert np.isclose(reg, 0), \
        "expected equilibrium wasn't an equilibrium, reg: {}".format(reg)
    for non_eqm in game.pure_mixtures():
        reg = regret.mixture_regret(game, non_eqm)
        # If eq_prob is 0 or 1, then pure is the desired mixture
        assert non_eqm[0] == eq_prob or not np.isclose(reg, 0), \
            "pure mixtures was equilibrium, {} {}".format(non_eqm, reg)
Exemple #18
0
def test_sym_2p2s_known_eq(eq_prob):
    """Test known equilibrium game"""
    game = gamegen.sym_2p2s_known_eq(eq_prob)
    assert game.is_complete(), "didn't generate a full game"
    assert game.is_symmetric(), \
        "didn't generate a symmetric game"
    assert np.all(game.num_role_players == 2), \
        "didn't generate correct number of strategies"
    assert np.all(game.num_role_strats == 2), \
        "didn't generate correct number of strategies"
    eqm = np.array([eq_prob, 1 - eq_prob])
    reg = regret.mixture_regret(game, eqm)
    assert np.isclose(reg, 0), \
        "expected equilibrium wasn't an equilibrium, reg: {}".format(reg)
    for non_eqm in game.pure_mixtures():
        reg = regret.mixture_regret(game, non_eqm)
        # If eq_prob is 0 or 1, then pure is the desired mixture
        assert non_eqm[0] == eq_prob or not np.isclose(reg, 0), \
            'pure mixtures was equilibrium, {} {}'.format(non_eqm, reg)
Exemple #19
0
def test_replicator_dynamics_noop():
    """Test that max_iters stops replicator dynamics"""
    game = gamegen.sym_2p2s_known_eq(1 / np.sqrt(2))
    eqm = nash.replicator_dynamics(game, [1 / 2, 1 / 2], max_iters=0)  # pylint: disable=unexpected-keyword-arg
    assert np.allclose(eqm, [1 / 2, 1 / 2])
Exemple #20
0
def test_old_nash_failure():
    """Test old nash functions appropriately"""
    prob = 1 / np.sqrt(2)
    game = gamegen.sym_2p2s_known_eq(prob)
    eqa = nash.mixed_nash(game, replicator=dict(max_iters=0))
    assert not eqa.size
Exemple #21
0
def test_replicator_dynamics_noop():
    """Test that max_iters stops replicator dynamics"""
    game = gamegen.sym_2p2s_known_eq(1 / np.sqrt(2))
    eqm = nash.replicator_dynamics(game, [1/2, 1/2], max_iters=0) # pylint: disable=unexpected-keyword-arg
    assert np.allclose(eqm, [1/2, 1/2])
Exemple #22
0
def test_replicator_dynamics():
    """Test that it works for games we know it works for"""
    game = gamegen.sym_2p2s_known_eq(1 / np.sqrt(2))
    eqm = nash.replicator_dynamics(game, [1/2, 1/2])
    assert np.allclose(eqm, [1 / np.sqrt(2), 1 - 1 / np.sqrt(2)])
Exemple #23
0
def test_regret_matching_failure():
    """Test that it works for games we know it works for"""
    game = gamegen.sym_2p2s_known_eq(1 / np.sqrt(2))
    eqm = nash.regret_matching(game, [0, 2])
    assert np.allclose(eqm, [1/2, 1/2], atol=1e-2)
Exemple #24
0
def test_regret_matching_failure():
    """Test that it works for games we know it works for"""
    game = gamegen.sym_2p2s_known_eq(1 / np.sqrt(2))
    eqm = nash.regret_matching(game, [0, 2])
    assert np.allclose(eqm, [1 / 2, 1 / 2], atol=1e-2)
Exemple #25
0
def test_replicator_dynamics():
    """Test that it works for games we know it works for"""
    game = gamegen.sym_2p2s_known_eq(1 / np.sqrt(2))
    eqm = nash.replicator_dynamics(game, [1 / 2, 1 / 2])
    assert np.allclose(eqm, [1 / np.sqrt(2), 1 - 1 / np.sqrt(2)])
Exemple #26
0
def test_old_nash_failure():
    """Test old nash functions appropriately"""
    prob = 1 / np.sqrt(2)
    game = gamegen.sym_2p2s_known_eq(prob)
    eqa = nash.mixed_nash(game, replicator=dict(max_iters=0))
    assert not eqa.size