Exemple #1
0
def print_values_gammalib():
    """Print some Gammalib model values that can be used for unit tests.
    
    Gammalib uses normalised PDFs, i.e. eval() returns probability / steradian
    so that the integral is one.
    """
    import numpy as np
    import gammalib

    # We need some dummy variables
    center = gammalib.GSkyDir()
    center.radec_deg(0, 0)
    energy = gammalib.GEnergy()
    time = gammalib.GTime()

    FWHM_TO_SIGMA = 1. / np.sqrt(8 * np.log(2))
    g = gammalib.GModelSpatialRadialGauss(
        center, PIX_TO_DEG * FWHM_TO_SIGMA * GAUSS_FWHM)
    d = gammalib.GModelSpatialRadialDisk(center, PIX_TO_DEG * DISK_R0)
    s = gammalib.GModelSpatialRadialShell(center, PIX_TO_DEG * SHELL_R0,
                                          PIX_TO_DEG * SHELL_WIDTH)

    models = [('g', g), ('d', d), ('s', s)]
    for name, model in models:
        for theta in THETAS:
            theta_radians = np.radians(PIX_TO_DEG * theta)
            gammalib_value = model.eval(theta_radians, energy, time)
            sherpa_value = INTEGRAL * gammalib_value * np.radians(
                PIX_TO_DEG)**2
            print name, theta, sherpa_value
def append_fhl(models, bmax,
                bin_models, bin_dict, bin_distx, bin_disty, bin_radr, bin_frlog,
                snr_models, snr_dict, snr_distx, snr_disty, snr_radr, snr_frlog,
                isnr_models, isnr_dict, isnr_distx, isnr_disty, isnr_radr, isnr_frlog,
                dist_sigma=3., sig50_thresh=3., eph_thresh=100.):
    """
    Append missing models from Fermi high-energy catalog to gammalib model container
    :param models: ~gammalib.GModels, gammalib model container
    :param bmax: float, maximum latitude of models to include
    :param dist_sigma: float, minimum distance in sigma's from pre-existing source to add as new
    :param sig50_thresh: float, threshold sigma on significance above 50 GeV to apply
    :param eph_thresh: float, minimum energy of detected photons required
    :return: result: dictionary
    """
    # filter FHL table based on latitude and hardness
    # hard sources are seleted based on significance above 50 GeV and highest photon energy
    # calculate significance above 50 GeV
    sig50 = np.sqrt(np.sum(np.power(fhl['Sqrt_TS_Band'][:,2:], 2),axis=1))
    # filter
    fsources = fhl[(np.abs(fhl['GLAT']) <= bmax) & (sig50 >= sig50_thresh) & (
                fhl['HEP_Energy'] >= eph_thresh)]

    # prepare new gammalib model container
    newpt = 0
    newext = 0
    n_bin_del = 0
    n_snr_del = 0
    n_isnr_del = 0
    newmodels = gammalib.GModels()
    # keep track also of artificial cutoffs
    ecut_pwn = []
    ecut_snr = []
    ecut_unid = []
    ecut_agn = []
    n_ecut_pwn = 0
    n_ecut_snr = 0
    n_ecut_agn = 0
    n_ecut_unid = 0

    msg = ''

    # loop over fermi sources
    for fsource in fsources:
        # assume source is new
        new = 1
        # fermi source position as gammalib.GSkyDir
        fdir = gammalib.GSkyDir()
        ra = np.double(fsource['RAJ2000'])
        dec = np.double(fsource['DEJ2000'])
        fdir.radec_deg(ra, dec)
        ######################################### treat pointlike sources for Fermi ###########
        if fsource['Extended_Source_Name'] == '':
            # case of sources pointlike for Fermi
            # loop over gammalib container and determine closest neighbor
            # initialize at 1000
            dist_min = 1000.
            for source in models:
                dir = get_model_dir(source)
                dist = fdir.dist_deg(dir)
                dist_min = np.minimum(dist, dist_min)
            if dist_min < dist_sigma * fsource['Conf_95_SemiMajor'] / 2:
                # closeby source foud in container, source will not be added
                new = 0
            else:
                # source will be added to container, set spatial model
                spatial = gammalib.GModelSpatialPointSource(fdir)
                newpt += 1
        ######################################### treat extended sources for Fermi ############
        else:
            # retrieve Fermi extended source radius
            ext_fsource = ext_fhl[ext_fhl['Source_Name'] == fsource['Extended_Source_Name']][0]
            fradius = np.double(ext_fsource['Model_SemiMajor'])
            # "corrected" distance, i.e, centre distance - radius of source
            # initialize at 1000
            dist_corr = 1000.
            for source in models:
                dir = get_model_dir(source)
                dist = fdir.dist_deg(dir)
                # get source radius according to model used
                radius = get_model_radius(source)
                # use as radius the max between Fermi and model
                radius = np.maximum(fradius,radius)
                # subtract from distance the max radius
                dist -= radius
                dist_corr = np.minimum(dist,dist_corr)
            if dist_corr < 0.:
                # overlapping source foud in container, source will not be added
                new = 0
            else:
                # source will be added to container, set spatial model
                fradius2 = np.double(ext_fsource['Model_SemiMinor'])
                fpangle = np.double(ext_fsource['Model_PosAng'])
                # retrieve Fermi spatial model to set it in container
                if ext_fsource['Model_Form'] == 'Disk':
                    if fradius2 == fradius:
                        spatial = gammalib.GModelSpatialRadialDisk(fdir,fradius)
                    else:
                        spatial = gammalib.GModelSpatialEllipticalDisk(fdir, fradius, fradius2, fpangle)
                elif ext_fsource['Model_Form'] == '2D Gaussian':
                    if fradius2 == fradius:
                        spatial = gammalib.GModelSpatialRadialGauss(fdir,fradius)
                    else:
                        spatial = gammalib.GModelSpatialEllipticalGauss(fdir, fradius, fradius2, fpangle)
                elif ext_fsource['Model_Form'] == 'Ring':
                    spatial = gammalib.GModelSpatialRadialShell(fdir,fradius, fradius2)
                elif ext_fsource['Model_Form'] == 'Map':
                    print('{} modeled by spatial template, which is not implemented, skip'.format(fsource['Source_Name']))
                    new = 0
                else:
                    print('{} modeled by model type {}, which is not implemented, skip'.format(fsource['Source_Name'],ext_fsource['Model_Form']))
                    new = 0
                if new == 1:
                    newext +=1
        ######################################### spectra #####################################
        if new == 1:
            # spectral model
            eref = gammalib.GEnergy(np.double(fsource['Pivot_Energy']), 'GeV')
            norm = np.double(fsource['Flux_Density'])
            norm *= 1.e-3  # ph GeV-1 -> ph MeV-1
            # use power law model only if signifcance of curvature < 1
            # this avoids extrapolating hard power laws not justified by the data
            if fsource['Signif_Curve'] < 1:
                index = np.double(fsource['PowerLaw_Index'])
                if index < 2.4:
                    # correction for fake pevatrons
                    if fsource['CLASS'] == 'PWN' or fsource['CLASS'] == 'pwn':
                        # dummy model to obtain search radius
                        mod = gammalib.GModelSky(spatial, gammalib.GModelSpectralPlaw())
                        # search radius
                        rad = get_model_radius(mod) + 0.2
                        # set cutoff
                        ecut = get_cutoff(ra, dec, 'PSR', rad_search=rad)
                        ecut_pwn.append(ecut)
                        n_ecut_pwn += 1
                    elif fsource['CLASS'] == 'SNR' or fsource['CLASS'] == 'snr':
                        gname = fsource['ASSOC1']
                        if 'SNR' in gname:
                            pass
                        else:
                            gname = None
                        # compute cutoff
                        # we use default value for particle spectral index because measurements are highly uncertain
                        ecut = get_cutoff(ra, dec, 'SNR', name=gname)
                        ecut_snr.append(ecut)
                        n_ecut_snr += 1
                    elif fsource['CLASS'] == 'bll' or fsource['CLASS'] == 'bcu' or fsource['CLASS'] == 'fsrq':
                        ecut = get_cutoff(ra, dec, 'AGN', z = fsource['Redshift'])
                        ecut_agn.append(ecut)
                        n_ecut_agn += 1
                    else:
                        if fsource['CLASS'] == '' or fsource['CLASS'] == 'unknown':
                            pass
                        else:
                            # set warning if we have hard source of unexpected type
                            msg += 'FHL source {} of type {} has an unxepctedly hard spectrum ' \
                                  'with index {}. We are setting a random artificial cutoff\n'.format(
                                fsource['Source_Name'], fsource['CLASS'], index)
                            print(msg)
                        ecut = get_cutoff(ra, dec, 'UNID')
                        ecut_unid.append(ecut)
                        n_ecut_unid += 1
                    ecut = gammalib.GEnergy(np.double(ecut), 'TeV')
                    spectral = gammalib.GModelSpectralExpPlaw(norm, -index, eref, ecut)
                else:
                    spectral = gammalib.GModelSpectralPlaw(norm, -index, eref)
            else:
                index = np.double(fsource['Spectral_Index'])
                curvature = np.double(fsource['beta'])
                spectral = gammalib.GModelSpectralLogParabola(norm, -index, eref, curvature)
            # assemble model and append to container
            model = gammalib.GModelSky(spatial, spectral)
            model.name(fsource['Source_Name'])
            newmodels.append(model)
            # delete synthetic sources as needed
            if fsource['CLASS'] == 'HMB' or fsource['CLASS'] == 'hmb' or fsource['CLASS'] == 'BIN' or fsource['CLASS'] == 'bin':
                rname, bin_dict, distx, disty, radr, frlog = find_source_to_delete(bin_dict, fdir.l_deg(),
                                                        fdir.b_deg(), get_model_radius(model),
                                                        flux_Crab(model,1.,1000.))
                bin_models.remove(rname)
                n_bin_del += 1
                bin_distx.append(distx)
                bin_disty.append(disty)
                bin_radr.append(radr)
                bin_frlog.append(frlog)
            elif fsource['CLASS'] == 'PWN' or fsource['CLASS'] == 'pwn' or fsource['CLASS'] == 'spp':
                # implement synthetic PWNe here
                pass
            elif fsource['CLASS'] == 'SNR' or fsource['CLASS'] == 'snr':
                # determine if snr is interacting
                assoc = snr_class[snr_class['ASSOC1'] == fsource['ASSOC1']]
                if assoc[0]['is int'] == 'yes':
                    # interacting
                    rname, isnr_dict, distx, disty, radr, frlog = find_source_to_delete(isnr_dict,
                                                                                 fdir.l_deg(),
                                                                                 fdir.b_deg(), get_model_radius(model),
                                                                                 flux_Crab(model, 1.,1000.))
                    isnr_models.remove(rname)
                    n_isnr_del += 1
                    isnr_distx.append(distx)
                    isnr_disty.append(disty)
                    isnr_radr.append(radr)
                    isnr_frlog.append(frlog)
                else:
                    # young
                    rname, snr_dict, distx, disty, radr, frlog = find_source_to_delete(snr_dict,
                                                                                  fdir.l_deg(),
                                                                                  fdir.b_deg(), get_model_radius(model),
                                                                                  flux_Crab(model,1.,1000.))
                    snr_models.remove(rname)
                    n_snr_del += 1
                    snr_distx.append(distx)
                    snr_disty.append(disty)
                    snr_radr.append(radr)
                    snr_frlog.append(frlog)
            else:
                pass
        else:
            # source already present, skip
            pass

    # add new models to original container
    for model in newmodels:
        models.append(model)

    # assemble output in dictionary
    result = { 'models' : models, 'newpt' : newpt, 'newext' : newext,
               'ecut_pwn' : ecut_pwn, 'ecut_snr' : ecut_snr, 'ecut_agn' : ecut_agn,
               'ecut_unid' : ecut_unid, 'n_ecut_pwn' : n_ecut_pwn, 'n_ecut_snr' : n_ecut_snr,
               'n_ecut_agn' : n_ecut_agn, 'n_ecut_unid' : n_ecut_unid, 'msg' : msg,
               'bin_models' : bin_models, 'bin_dict' : bin_dict, 'n_bin_del' : n_bin_del,
               'bin_distx' : bin_distx, 'bin_disty' : bin_disty, 'bin_radr' : bin_radr, 'bin_frlog' : bin_frlog,
               'snr_models': snr_models, 'snr_dict': snr_dict, 'n_snr_del': n_snr_del,
               'snr_distx': snr_distx, 'snr_disty': snr_disty, 'snr_radr': snr_radr, 'snr_frlog': snr_frlog,
               'isnr_models': isnr_models, 'isnr_dict': isnr_dict, 'n_isnr_del': n_isnr_del,
               'isnr_distx': isnr_distx, 'isnr_disty': isnr_disty, 'isnr_radr': isnr_radr, 'isnr_frlog': isnr_frlog
    }

    return result
def set_source_model(srcmodel,
                     spec='plaw',
                     alpha=1.0,
                     mapname='../map_RXJ1713.fits'):
    """
    Set source model

    Parameters
    ----------
    srcmodel : str
        Source model name
    spec : str, optional
        Spectral model
    alpha : float, optional
        Map scaling factor
    mapname : str, optional
        Sky map name

    Returns
    -------
    source : `~gammalib.GModelSky()`
        Source model
    """
    # Set spectral component
    if spec == 'plaw':
        spectral = gammalib.GModelSpectralPlaw(1.0e-17, -2.0,
                                               gammalib.GEnergy(1.0, 'TeV'))
        spectral['Prefactor'].min(1.0e-25)
    elif spec == 'eplaw':
        spectral = gammalib.GModelSpectralExpPlaw(
            1.0e-17, -2.0, gammalib.GEnergy(1.0, 'TeV'),
            gammalib.GEnergy(10.0, 'TeV'))
        spectral['CutoffEnergy'].min(1.0e6)
        spectral['CutoffEnergy'].max(1.0e8)
        spectral['Prefactor'].min(1.0e-25)
    elif spec == 'inveplaw':
        spectral = gammalib.GModelSpectralExpInvPlaw(
            1.0e-17, -2.0, gammalib.GEnergy(1.0, 'TeV'),
            gammalib.GEnergy(10.0, 'TeV'))
        spectral['Prefactor'].min(1.0e-25)
    elif spec == 'logparabola':
        spectral = gammalib.GModelSpectralLogParabola(
            1.0e-17, -2.0, gammalib.GEnergy(1.0, 'TeV'), -0.3)
        spectral['Prefactor'].min(1.0e-25)
    elif spec == 'abdalla2018':
        spectral = gammalib.GModelSpectralExpPlaw(
            2.3e-17, -2.06, gammalib.GEnergy(1.0, 'TeV'),
            gammalib.GEnergy(12.9, 'TeV'))
        spectral['Prefactor'].fix()
        spectral['Index'].fix()
        spectral['CutoffEnergy'].fix()
    elif spec == 'abdalla2018Ec':
        spectral = gammalib.GModelSpectralExpPlaw(
            2.3e-17, -2.06, gammalib.GEnergy(1.0, 'TeV'),
            gammalib.GEnergy(12.9, 'TeV'))
        spectral['CutoffEnergy'].fix()
        spectral['Prefactor'].min(1.0e-25)
    elif spec == 'aharonian2007':
        spectral = gammalib.GModelSpectralLogParabola(
            2.06e-17, -2.02, gammalib.GEnergy(1.0, 'TeV'), -0.29)
        spectral['Prefactor'].fix()
        spectral['Index'].fix()
        spectral['Curvature'].fix()

    # Set spatial component
    if 'map' in srcmodel:
        filename = '%s' % mapname
        map = gammalib.GSkyMap(filename)
        map = scale_map(map, alpha)
        filename = 'map_RXJ1713_%.2f.fits' % alpha
        map.save(filename, True)
        spatial = gammalib.GModelSpatialDiffuseMap(filename)
    elif 'disk' in srcmodel:
        dir = gammalib.GSkyDir()
        dir.radec_deg(258.3, -39.7)
        spatial = gammalib.GModelSpatialRadialDisk(dir, 0.5)
        spatial['RA'].free()
        spatial['DEC'].free()
    elif 'gauss' in srcmodel:
        dir = gammalib.GSkyDir()
        dir.radec_deg(258.3, -39.7)
        spatial = gammalib.GModelSpatialRadialGauss(dir, 0.5)
        spatial['RA'].free()
        spatial['DEC'].free()
    elif 'shell' in srcmodel:
        dir = gammalib.GSkyDir()
        dir.radec_deg(258.3, -39.7)
        spatial = gammalib.GModelSpatialRadialShell(dir, 0.4, 0.2)
        spatial['RA'].free()
        spatial['DEC'].free()

    # Set source model
    source = gammalib.GModelSky(spatial, spectral)
    source.name('RX J1713.7-3946')
    source.tscalc(True)

    # Return source model
    return source
             msg = 'WARNING: elliptical source {} from gamma-cat has spatial model frame of type {} which is not implemented\n'.format(
                 source['common_name'], source['morph_pa_frame'])
             print(msg)
             outfile.write(msg)
             skip = True
 elif source['morph_type'] == 'shell':
     if np.isnan(source['morph_sigma2']):
         # only average radius known, assume with of shell is 30% of radius
         rad = np.double(source['morph_sigma'])
         r_inner = rad * 0.85
         width = 0.3 * rad
     else:
         r_inner = np.double(source['morph_sigma'])
         r_outer = np.double(source['morph_sigma2'])
         width = r_outer - r_inner
     spatial = gammalib.GModelSpatialRadialShell(
         src_dir, r_inner, width)
     radius = r_inner + width
 else:
     msg = 'WARNING: source {} from gamma-cat has spatial model of type {} which is not implemented\n'.format(
         source['common_name'], source['morph_type'])
     print(msg)
     outfile.write(msg)
     skip = True
 # retrieve source spectral model
 if source['spec_type'] == 'pl' or source['spec_type'] == 'pl2':
     # treat together to handle fake PeVatron correction
     # index
     if source['spec_type'] == 'pl':
         index = source['spec_pl_index']
         norm = source['spec_pl_norm']
         eref = gammalib.GEnergy(np.double(source['spec_pl_e_ref']),