Exemple #1
0
def get_npred_map():
    position = SkyCoord(0.0, 0.0, frame="galactic", unit="deg")
    energy_axis = MapAxis.from_bounds(1,
                                      100,
                                      nbin=30,
                                      unit="TeV",
                                      name="energy",
                                      interp="log")

    exposure = Map.create(
        binsz=0.02,
        map_type="wcs",
        skydir=position,
        width="2 deg",
        axes=[energy_axis],
        coordsys="GAL",
        unit="cm2 s",
    )

    spatial_model = GaussianSpatialModel(lon_0="0 deg",
                                         lat_0="0 deg",
                                         sigma="0.2 deg",
                                         frame="galactic")
    spectral_model = PowerLawSpectralModel(amplitude="1e-11 cm-2 s-1 TeV-1")
    skymodel = SkyModel(spatial_model=spatial_model,
                        spectral_model=spectral_model)

    exposure.data = 1e14 * np.ones(exposure.data.shape)
    evaluator = MapEvaluator(model=skymodel, exposure=exposure)

    npred = evaluator.compute_npred()
    return evaluator, npred
Exemple #2
0
    def calc_bk(self, lon0, lat0, sig, amp):
        """
            returns the computed b_k and the diffuse model template.
        """
        # Define sky model to fit the data
        ind = 2.0

        spatial_model = SkyGaussian(lon_0=lon0, lat_0=lat0, sigma=sig)
        spectral_model = PowerLaw(index=ind, amplitude=amp, reference="1 TeV")
        model = SkyModel(spatial_model=spatial_model,
                         spectral_model=spectral_model)

        # For simulations, we can have the same npred map

        b_k = []
        Sk_list = []

        for count, bkg, exp in zip(self.count_list, self.background_list,
                                   self.exposure_list):

            evaluator = MapEvaluator(model=model, exposure=exp)
            npred = evaluator.compute_npred()
            geom = exp.geom
            diffuse_map = WcsNDMap(geom, npred)  #This is Sk
            Bk = bkg.data
            Sk = diffuse_map.data
            Nk = count.data

            not_has_exposure = ~(exp.data > 0)
            not_has_bkg = ~(Bk > 0)

            S_B = np.divide(Sk, Bk)
            S_B[not_has_exposure] = 0.0
            S_B[not_has_bkg] = 0.0

            #Sk is nan for large sep.. to be investigated. temp soln
            #if np.isnan(np.sum(S_B)):
            #    S_B=np.zeros(S_B.shape)

            delta = np.power(np.sum(Nk) / np.sum(Bk),
                             2.0) - 4.0 * np.sum(S_B) / np.sum(Bk)
            #print(np.sum(Nk),np.sum(Bk),np.sum(Sk),np.sum(S_B), delta)
            #print("delta is %f for obs no %s",delta,k)
            #bk1=(np.sum(Nk)/np.sum(Bk) - np.sqrt(delta))/2.0
            bk2 = (np.sum(Nk) / np.sum(Bk) + np.sqrt(delta)) / 2.0
            b_k.append(bk2)
            Sk_list.append(diffuse_map)

        return Sk_list, b_k
Exemple #3
0
psf_kernel.psf_kernel_map.sum_over_axes().plot(stretch="log", add_cbar=True);


# ## Background
# 
# Let's compute a background cube, with predicted number of background events per pixel from the diffuse Galactic and isotropic model components. For this, we use the use the [gammapy.cube.MapEvaluator](http://docs.gammapy.org/dev/api/gammapy.cube.MapEvaluator.html) to multiply with the exposure and apply the PSF. The Fermi-LAT energy dispersion at high energies is small, we neglect it here.

# In[ ]:


model = SkyDiffuseCube(diffuse_galactic)

evaluator = MapEvaluator(model=model, exposure=exposure, psf=psf_kernel)

background_gal = counts.copy(data=evaluator.compute_npred())
background_gal.sum_over_axes().plot()
print("Background counts from Galactic diffuse: ", background_gal.data.sum())


# In[ ]:


model = SkyModel(SkyDiffuseConstant(), diffuse_iso)

evaluator = MapEvaluator(model=model, exposure=exposure, psf=psf_kernel)

background_iso = counts.copy(data=evaluator.compute_npred())
background_iso.sum_over_axes().plot()
print("Background counts from isotropic diffuse: ", background_iso.data.sum())
Exemple #4
0
)


# Define some observation parameters
# we are not simulating many pointings / observations
pointing = SkyCoord(0.2, 0.5, unit="deg", frame="galactic")
livetime = 20 * u.hour

exposure_map = make_map_exposure_true_energy(
    pointing=pointing, livetime=livetime, aeff=aeff, geom=geom
)

evaluator = MapEvaluator(model=compound_model, exposure=exposure_map)


npred = evaluator.compute_npred()
npred_map = WcsNDMap(geom, npred)

fig, ax, cbar = npred_map.sum_over_axes().plot(add_cbar=True)
ax.scatter(
    [lon_0_1, lon_0_2, pointing.galactic.l.degree],
    [lat_0_1, lat_0_2, pointing.galactic.b.degree],
    transform=ax.get_transform("galactic"),
    marker="+",
    color="cyan",
)
# plt.show()
plt.clf()

rng = get_random_state(42)
counts = rng.poisson(npred)
Exemple #5
0
)


# Define some observation parameters
# we are not simulating many pointings / observations
pointing = SkyCoord(0.2, 0.5, unit="deg", frame="galactic")
livetime = 20 * u.hour

exposure_map = make_map_exposure_true_energy(
    pointing=pointing, livetime=livetime, aeff=aeff, geom=geom
)

evaluator = MapEvaluator(model=models, exposure=exposure_map)


npred = evaluator.compute_npred()
npred_map = WcsNDMap(geom, npred)

fig, ax, cbar = npred_map.sum_over_axes().plot(add_cbar=True)
ax.scatter(
    [lon_0_1, lon_0_2, pointing.galactic.l.degree],
    [lat_0_1, lat_0_2, pointing.galactic.b.degree],
    transform=ax.get_transform("galactic"),
    marker="+",
    color="cyan",
)
# plt.show()
plt.clf()

rng = get_random_state(42)
counts = rng.poisson(npred)
Exemple #6
0
    def run_region(self, kr, lon, lat, radius):
        #    TODO: for now we have to read/create the allsky maps each in each job
        #    because we can't pickle <functools._lru_cache_wrapper object
        #    send this back to init when fixed

        # exposure
        exposure_hpx = Map.read(
            self.datadir + "/fermi_3fhl/fermi_3fhl_exposure_cube_hpx.fits.gz")
        exposure_hpx.unit = "cm2 s"

        # background iem
        infile = self.datadir + "/catalogs/fermi/gll_iem_v06.fits.gz"
        outfile = self.resdir + "/gll_iem_v06_extra.fits"
        model_iem = extrapolate_iem(infile, outfile, self.logEc_extra)

        # ROI
        roi_time = time()
        ROI_pos = SkyCoord(lon, lat, frame="galactic", unit="deg")
        width = 2 * (radius + self.psf_margin)

        # Counts
        counts = Map.create(
            skydir=ROI_pos,
            width=width,
            proj="CAR",
            coordsys="GAL",
            binsz=self.dlb,
            axes=[self.energy_axis],
            dtype=float,
        )
        counts.fill_by_coord({
            "skycoord": self.events.radec,
            "energy": self.events.energy
        })

        axis = MapAxis.from_nodes(counts.geom.axes[0].center,
                                  name="energy",
                                  unit="GeV",
                                  interp="log")
        wcs = counts.geom.wcs
        geom = WcsGeom(wcs=wcs, npix=counts.geom.npix, axes=[axis])
        coords = counts.geom.get_coord()

        # expo
        data = exposure_hpx.interp_by_coord(coords)
        exposure = WcsNDMap(geom, data, unit=exposure_hpx.unit, dtype=float)

        # read PSF
        psf_kernel = PSFKernel.from_table_psf(self.psf,
                                              counts.geom,
                                              max_radius=self.psf_margin *
                                              u.deg)

        # Energy Dispersion
        e_true = exposure.geom.axes[0].edges
        e_reco = counts.geom.axes[0].edges
        edisp = EnergyDispersion.from_diagonal_response(e_true=e_true,
                                                        e_reco=e_reco)

        # fit mask
        if coords["lon"].min() < 90 * u.deg and coords["lon"].max(
        ) > 270 * u.deg:
            coords["lon"][coords["lon"].value > 180] -= 360 * u.deg
        mask = (
            (coords["lon"] >= coords["lon"].min() + self.psf_margin * u.deg)
            & (coords["lon"] <= coords["lon"].max() - self.psf_margin * u.deg)
            & (coords["lat"] >= coords["lat"].min() + self.psf_margin * u.deg)
            & (coords["lat"] <= coords["lat"].max() - self.psf_margin * u.deg))
        mask_fermi = WcsNDMap(counts.geom, mask)

        # IEM
        eval_iem = MapEvaluator(model=model_iem,
                                exposure=exposure,
                                psf=psf_kernel,
                                edisp=edisp)
        bkg_iem = eval_iem.compute_npred()

        # ISO
        eval_iso = MapEvaluator(model=self.model_iso,
                                exposure=exposure,
                                edisp=edisp)
        bkg_iso = eval_iso.compute_npred()

        # merge iem and iso, only one local normalization is fitted
        background_total = bkg_iem + bkg_iso
        background_model = BackgroundModel(background_total)
        background_model.parameters["norm"].min = 0.0

        # Sources model
        in_roi = self.FHL3.positions.galactic.contained_by(wcs)
        FHL3_roi = []
        for ks in range(len(self.FHL3.table)):
            if in_roi[ks] == True:
                model = self.FHL3[ks].sky_model()
                model.spatial_model.parameters.freeze_all()  # freeze spatial
                model.spectral_model.parameters["amplitude"].min = 0.0
                if isinstance(model.spectral_model, PowerLawSpectralModel):
                    model.spectral_model.parameters["index"].min = 0.1
                    model.spectral_model.parameters["index"].max = 10.0
                else:
                    model.spectral_model.parameters["alpha"].min = 0.1
                    model.spectral_model.parameters["alpha"].max = 10.0

                FHL3_roi.append(model)
        model_total = SkyModels(FHL3_roi)

        # Dataset
        dataset = MapDataset(
            model=model_total,
            counts=counts,
            exposure=exposure,
            psf=psf_kernel,
            edisp=edisp,
            background_model=background_model,
            mask_fit=mask_fermi,
            name="3FHL_ROI_num" + str(kr),
        )
        cat_stat = dataset.stat_sum()

        datasets = Datasets([dataset])
        fit = Fit(datasets)
        results = fit.run(optimize_opts=self.optimize_opts)
        print("ROI_num", str(kr), "\n", results)
        fit_stat = datasets.stat_sum()

        if results.message == "Optimization failed.":
            pass
        else:
            datasets.to_yaml(path=Path(self.resdir),
                             prefix=dataset.name,
                             overwrite=True)
            np.save(
                self.resdir + "/3FHL_ROI_num" + str(kr) + "_covariance.npy",
                results.parameters.covariance,
            )
            np.savez(
                self.resdir + "/3FHL_ROI_num" + str(kr) + "_fit_infos.npz",
                message=results.message,
                stat=[cat_stat, fit_stat],
            )

            exec_time = time() - roi_time
            print("ROI", kr, " time (s): ", exec_time)

            for model in FHL3_roi:
                if (self.FHL3[model.name].data["ROI_num"] == kr
                        and self.FHL3[model.name].data["Signif_Avg"] >=
                        self.sig_cut):
                    flux_points = FluxPointsEstimator(
                        datasets=datasets,
                        e_edges=self.El_flux,
                        source=model.name,
                        sigma_ul=2.0,
                    ).run()
                    filename = self.resdir + "/" + model.name + "_flux_points.fits"
                    flux_points.write(filename, overwrite=True)

            exec_time = time() - roi_time - exec_time
            print("ROI", kr, " Flux points time (s): ", exec_time)
Exemple #7
0
e_reco = counts.geom.axes[0].edges
edisp = EnergyDispersion.from_diagonal_response(e_true=e_true, e_reco=e_reco)

# ## Background
#
# Let's compute a background cube, with predicted number of background events per pixel from the diffuse Galactic and isotropic model components. For this, we use the use the [gammapy.cube.MapEvaluator](https://docs.gammapy.org/dev/api/gammapy.cube.MapEvaluator.html) to multiply with the exposure and apply the PSF. The Fermi-LAT energy dispersion at high energies is small, we neglect it here.

# In[ ]:

model_diffuse = SkyDiffuseCube(diffuse_galactic, name="diffuse")
eval_diffuse = MapEvaluator(model=model_diffuse,
                            exposure=exposure,
                            psf=psf_kernel,
                            edisp=edisp)

background_gal = eval_diffuse.compute_npred()

background_gal.sum_over_axes().plot()
print("Background counts from Galactic diffuse: ", background_gal.data.sum())

# In[ ]:

model_iso = SkyModel(ConstantSpatialModel(), diffuse_iso, name="diffuse-iso")

eval_iso = MapEvaluator(model=model_iso, exposure=exposure, edisp=edisp)

background_iso = eval_iso.compute_npred()

background_iso.sum_over_axes().plot(add_cbar=True)
print("Background counts from isotropic diffuse: ", background_iso.data.sum())