def get_observations(self): """Fetch observations from the data store according to criteria defined in the configuration.""" self.config.validate() log.info("Fetching observations.") datastore_path = make_path(self.settings["observations"]["datastore"]) if datastore_path.is_file(): datastore = DataStore().from_file(datastore_path) elif datastore_path.is_dir(): datastore = DataStore().from_dir(datastore_path) else: raise FileNotFoundError(f"Datastore {datastore_path} not found.") ids = set() selection = dict() for criteria in self.settings["observations"]["filters"]: selected_obs = ObservationTable() # TODO: Reduce significantly the code. # This block would be handled by datastore.obs_table.select_observations selection["type"] = criteria["filter_type"] for key, val in criteria.items(): if key in ["lon", "lat", "radius", "border"]: val = Angle(val) selection[key] = val if selection["type"] == "angle_box": selection["type"] = "par_box" selection["value_range"] = Angle(criteria["value_range"]) if selection["type"] == "sky_circle" or selection["type"].endswith("_box"): selected_obs = datastore.obs_table.select_observations(selection) if selection["type"] == "par_value": mask = ( datastore.obs_table[criteria["variable"]] == criteria["value_param"] ) selected_obs = datastore.obs_table[mask] if selection["type"] == "ids": obs_list = datastore.get_observations(criteria["obs_ids"]) selected_obs["OBS_ID"] = [obs.obs_id for obs in obs_list.list] if selection["type"] == "all": obs_list = datastore.get_observations() selected_obs["OBS_ID"] = [obs.obs_id for obs in obs_list.list] if len(selected_obs): if "exclude" in criteria and criteria["exclude"]: ids.difference_update(selected_obs["OBS_ID"].tolist()) else: ids.update(selected_obs["OBS_ID"].tolist()) self.observations = datastore.get_observations(ids, skip_missing=True) for obs in self.observations.list: log.info(obs)
class Analysis: """Config-driven high-level analysis interface. It is initialized by default with a set of configuration parameters and values declared in an internal configuration schema YAML file, though the user can also provide configuration parameters passed as a nested dictionary at the moment of instantiation. In that case these parameters will overwrite the default values of those present in the configuration file. For more info see :ref:`analysis`. Parameters ---------- config : dict or `AnalysisConfig` Configuration options following `AnalysisConfig` schema """ def __init__(self, config=None): if isinstance(config, dict): self._config = AnalysisConfig(config) elif isinstance(config, AnalysisConfig): self._config = config else: raise ValueError("Dict or `AnalysiConfig` object required.") self._set_logging() self.datastore = None self.observations = None self.datasets = None self.model = None self.fit = None self.fit_result = None self.flux_points = None @property def config(self): """Analysis configuration (`AnalysisConfig`)""" return self._config @property def settings(self): """Configuration settings for the analysis session.""" return self.config.settings def get_observations(self): """Fetch observations from the data store according to criteria defined in the configuration.""" self.config.validate() log.info("Fetching observations.") datastore_path = make_path(self.settings["observations"]["datastore"]) if datastore_path.is_file(): self.datastore = DataStore().from_file(datastore_path) elif datastore_path.is_dir(): self.datastore = DataStore().from_dir(datastore_path) else: raise FileNotFoundError(f"Datastore {datastore_path} not found.") ids = [] selection = dict() for criteria in self.settings["observations"]["filters"]: selected_obs = ObservationTable() # TODO: Reduce significantly the code. # This block would be handled by datastore.obs_table.select_observations selection["type"] = criteria["filter_type"] for key, val in criteria.items(): if key in ["lon", "lat", "radius", "border"]: val = Angle(val) selection[key] = val if selection["type"] == "angle_box": selection["type"] = "par_box" selection["value_range"] = Angle(criteria["value_range"]) if selection["type"] == "sky_circle" or selection["type"].endswith( "_box"): selected_obs = self.datastore.obs_table.select_observations( selection) if selection["type"] == "par_value": mask = (self.datastore.obs_table[criteria["variable"]] == criteria["value_param"]) selected_obs = self.datastore.obs_table[mask] if selection["type"] == "ids": obs_list = self.datastore.get_observations(criteria["obs_ids"]) selected_obs["OBS_ID"] = [obs.obs_id for obs in obs_list.list] if selection["type"] == "all": obs_list = self.datastore.get_observations() selected_obs["OBS_ID"] = [obs.obs_id for obs in obs_list.list] if len(selected_obs): if "exclude" in criteria and criteria["exclude"]: exclude = selected_obs["OBS_ID"].tolist() selection = np.isin(ids, exclude) ids = list(np.array(ids)[~selection]) else: ids.extend(selected_obs["OBS_ID"].tolist()) self.observations = self.datastore.get_observations(ids, skip_missing=True) for obs in self.observations.list: log.info(obs) def get_datasets(self): """Produce reduced datasets.""" if not self._validate_reduction_settings(): return False if self.settings["datasets"]["dataset-type"] == "SpectrumDatasetOnOff": self._spectrum_extraction() elif self.settings["datasets"]["dataset-type"] == "MapDataset": self._map_making() else: # TODO raise error? log.info("Data reduction method not available.") return False def set_model(self, model=None, filename=""): """Read the model from dict or filename and attach it to datasets. Parameters ---------- model: dict or string Dictionary or string in YAML format with the serialized model. filename : string Name of the model YAML file describing the model. """ if not self._validate_set_model(): return False log.info(f"Reading model.") if isinstance(model, str): model = yaml.safe_load(model) if model: self.model = SkyModels(dict_to_models(model)) elif filename: filepath = make_path(filename) self.model = SkyModels.from_yaml(filepath) else: return False # TODO: Deal with multiple components for dataset in self.datasets: if isinstance(dataset, MapDataset): dataset.model = self.model else: if len(self.model) > 1: raise ValueError("Cannot fit multiple spectral models") dataset.model = self.model[0].spectral_model log.info(self.model) def run_fit(self, optimize_opts=None): """Fitting reduced datasets to model.""" if not self._validate_fitting_settings(): return False for ds in self.datasets: # TODO: fit_range handled in jsonschema validation class if "fit" in self.settings and "fit_range" in self.settings["fit"]: e_min = u.Quantity(self.settings["fit"]["fit_range"]["min"]) e_max = u.Quantity(self.settings["fit"]["fit_range"]["max"]) if isinstance(ds, MapDataset): ds.mask_fit = ds.counts.geom.energy_mask(e_min, e_max) else: ds.mask_fit = ds.counts.energy_mask(e_min, e_max) log.info("Fitting reduced datasets.") self.fit = Fit(self.datasets) self.fit_result = self.fit.run(optimize_opts=optimize_opts) log.info(self.fit_result) def get_flux_points(self, source="source"): """Calculate flux points for a specific model component. Parameters ---------- source : string Name of the model component where to calculate the flux points. """ if not self._validate_fp_settings(): return False # TODO: add "source" to config log.info("Calculating flux points.") axis_params = self.settings["flux-points"]["fp_binning"] e_edges = MapAxis.from_bounds(**axis_params).edges flux_point_estimator = FluxPointsEstimator(e_edges=e_edges, datasets=self.datasets, source=source) fp = flux_point_estimator.run() fp.table["is_ul"] = fp.table["ts"] < 4 model = self.model[source].spectral_model.copy() self.flux_points = FluxPointsDataset(data=fp, model=model) cols = ["e_ref", "ref_flux", "dnde", "dnde_ul", "dnde_err", "is_ul"] log.info("\n{}".format(self.flux_points.data.table[cols])) @staticmethod def _create_geometry(params): """Create the geometry.""" geom_params = copy.deepcopy(params) axes = [] for axis_params in params.get("axes", []): ax = MapAxis.from_bounds(**axis_params) axes.append(ax) geom_params["axes"] = axes if "skydir" in geom_params: geom_params["skydir"] = tuple(geom_params["skydir"]) return WcsGeom.create(**geom_params) def _map_making(self): """Make maps and datasets for 3d analysis.""" log.info("Creating geometry.") geom = self._create_geometry(self.settings["datasets"]["geom"]) geom_irf = dict(energy_axis_true=None, binsz_irf=None, margin_irf=None) if "energy-axis-true" in self.settings["datasets"]: axis_params = self.settings["datasets"]["energy-axis-true"] geom_irf["energy_axis_true"] = MapAxis.from_bounds(**axis_params) geom_irf["binsz_irf"] = self.settings["datasets"].get("binsz", None) geom_irf["margin_irf"] = self.settings["datasets"].get("margin", None) offset_max = Angle(self.settings["datasets"]["offset-max"]) log.info("Creating datasets.") maker = MapDatasetMaker(geom=geom, offset_max=offset_max, **geom_irf) if self.settings["datasets"]["stack-datasets"]: stacked = MapDataset.create(geom=geom, name="stacked", **geom_irf) for obs in self.observations: dataset = maker.run(obs) stacked.stack(dataset) self._extract_irf_kernels(stacked) datasets = [stacked] else: datasets = [] for obs in self.observations: dataset = maker.run(obs) self._extract_irf_kernels(dataset) datasets.append(dataset) self.datasets = Datasets(datasets) def _extract_irf_kernels(self, dataset): # TODO: remove hard-coded default value max_radius = self.settings["datasets"].get("psf-kernel-radius", "0.6 deg") # TODO: handle IRF maps in fit geom = dataset.counts.geom geom_irf = dataset.exposure.geom position = geom.center_skydir geom_psf = geom.to_image().to_cube(geom_irf.axes) dataset.psf = dataset.psf.get_psf_kernel(position=position, geom=geom_psf, max_radius=max_radius) e_reco = geom.get_axis_by_name("energy").edges dataset.edisp = dataset.edisp.get_energy_dispersion(position=position, e_reco=e_reco) def _set_logging(self): """Set logging parameters for API.""" logging.basicConfig(**self.settings["general"]["logging"]) log.info("Setting logging config: {!r}".format( self.settings["general"]["logging"])) def _spectrum_extraction(self): """Run all steps for the spectrum extraction.""" region = self.settings["datasets"]["geom"]["region"] log.info("Reducing spectrum datasets.") on_lon = Angle(region["center"][0]) on_lat = Angle(region["center"][1]) on_center = SkyCoord(on_lon, on_lat, frame=region["frame"]) on_region = CircleSkyRegion(on_center, Angle(region["radius"])) maker_config = {} if "containment_correction" in self.settings["datasets"]: maker_config["containment_correction"] = self.settings["datasets"][ "containment_correction"] params = self.settings["datasets"]["geom"]["axes"][0] e_reco = MapAxis.from_bounds(**params).edges maker_config["e_reco"] = e_reco # TODO: remove hard-coded e_true and make it configurable maker_config["e_true"] = np.logspace(-2, 2.5, 109) * u.TeV maker_config["region"] = on_region dataset_maker = SpectrumDatasetMaker(**maker_config) bkg_maker_config = {} background = self.settings["datasets"]["background"] if "exclusion_mask" in background: map_hdu = {} filename = background["exclusion_mask"]["filename"] if "hdu" in background["exclusion_mask"]: map_hdu = {"hdu": background["exclusion_mask"]["hdu"]} exclusion_region = Map.read(filename, **map_hdu) bkg_maker_config["exclusion_mask"] = exclusion_region if background["background_estimator"] == "reflected": reflected_bkg_maker = ReflectedRegionsBackgroundMaker( **bkg_maker_config) else: # TODO: raise error? log.info( "Background estimation only for reflected regions method.") safe_mask_maker = SafeMaskMaker(methods=["aeff-default", "aeff-max"]) datasets = [] for obs in self.observations: selection = ["counts", "aeff", "edisp"] dataset = dataset_maker.run(obs, selection=selection) dataset = reflected_bkg_maker.run(dataset, obs) dataset = safe_mask_maker.run(dataset, obs) datasets.append(dataset) self.datasets = Datasets(datasets) if self.settings["datasets"]["stack-datasets"]: stacked = self.datasets.stack_reduce() stacked.name = "stacked" self.datasets = Datasets([stacked]) def _validate_reduction_settings(self): """Validate settings before proceeding to data reduction.""" if self.observations and len(self.observations): self.config.validate() return True else: log.info("No observations selected.") log.info("Data reduction cannot be done.") return False def _validate_set_model(self): if self.datasets and len(self.datasets) != 0: self.config.validate() return True else: log.info("No datasets reduced.") return False def _validate_fitting_settings(self): """Validate settings before proceeding to fit 1D.""" if not self.model: log.info("No model fetched for datasets.") log.info("Fit cannot be done.") return False else: return True def _validate_fp_settings(self): """Validate settings before proceeding to flux points estimation.""" valid = True if self.fit: self.config.validate() else: log.info("No results available from fit.") valid = False if "flux-points" not in self.settings: log.info("No values declared for the energy bins.") valid = False elif "fp_binning" not in self.settings["flux-points"]: log.info("No values declared for the energy bins.") valid = False if not valid: log.info("Flux points calculation cannot be done.") return valid