Exemple #1
0
    def test_transform(self):
        cwt_data = CWTData(
            counts=self.data["image"],
            background=self.data["background"],
            n_scale=self.kernels.n_scale,
        )
        self.cwt._transform(data=cwt_data)

        transform_3d = cwt_data.transform_3d.data
        assert_allclose(transform_3d[0, 100, 100], 0.0444647513236)
        assert_allclose(transform_3d[0, 10, 10], -0.00133091756454)
        assert_allclose(transform_3d[1, 100, 100], 0.00165322855919)
        assert_allclose(transform_3d[1, 10, 10], -9.2715980927e-05)

        error = cwt_data.error.data
        assert_allclose(error[0, 100, 100], 0.000840670230257)
        assert_allclose(error[0, 10, 10], 0.000810230288381)
        assert_allclose(error[1, 100, 100], 4.78305652411e-05)
        assert_allclose(error[1, 10, 10], 4.02498840476e-05)

        approx = cwt_data.approx.data
        assert_allclose(approx[100, 100], 0.353211779292)
        assert_allclose(approx[10, 10], -0.0210108511546)

        approx_bkg = cwt_data.approx_bkg.data
        assert_allclose(approx_bkg[100, 100], 0.99988318386)
        assert_allclose(approx_bkg[10, 10], 0.486747980289)
Exemple #2
0
    def setup(self):
        filename = "$GAMMAPY_DATA/tests/unbundled/poisson_stats_image/counts.fits.gz"
        image = Map.read(filename)
        background = image.copy(data=np.ones(image.data.shape, dtype=float))

        self.kernels = CWTKernels(n_scale=2,
                                  min_scale=3.0,
                                  step_scale=2.6,
                                  old=False)
        self.data = dict(image=image, background=background)
        self.cwt = CWT(kernels=self.kernels,
                       significance_threshold=2.0,
                       keep_history=True)
        self.cwt_data = CWTData(counts=image,
                                background=background,
                                n_scale=self.kernels.n_scale)
        self.cwt.analyze(data=self.cwt_data)
Exemple #3
0
 def test_execute_iteration(self):
     cwt_data = CWTData(
         counts=self.data["image"],
         background=self.data["background"],
         n_scale=self.kernels.n_scale,
     )
     self.cwt._execute_iteration(data=cwt_data)
     residual = cwt_data.residual.data
     assert_allclose(residual.var(), 1.10209961137)
     assert_allclose(residual[100, 100], 4.60067024083)
     assert_allclose(residual[10, 10], 0.0210108511546)
Exemple #4
0
    def test_inverse_transform(self):
        cwt_data = CWTData(
            counts=self.data["image"],
            background=self.data["background"],
            n_scale=self.kernels.n_scale,
        )
        self.cwt._execute_iteration(data=cwt_data)

        model = cwt_data.model.data
        transform_2d = cwt_data.transform_2d.data
        assert_allclose(model.sum(), 11.7236771527)
        assert_allclose(transform_2d.sum(), 11.7236771527)
Exemple #5
0
    def test_compute_support(self):
        cwt_data = CWTData(
            counts=self.data["image"],
            background=self.data["background"],
            n_scale=self.kernels.n_scale,
        )
        self.cwt._transform(data=cwt_data)
        self.cwt._compute_support(data=cwt_data)

        support_3d = cwt_data.support_3d.data
        assert_allclose(support_3d[0].sum(), 1095)
        assert_allclose(support_3d[1].sum(), 2368)
Exemple #6
0
def run_cwt():
    data = make_poisson_data()

    cwt_kernels = CWTKernels(n_scale=2,
                             min_scale=3.0,
                             step_scale=2.6,
                             old=False)
    cwt = CWT(kernels=cwt_kernels,
              significance_threshold=2.,
              keep_history=True)
    cwt_data = CWTData(counts=data['image'],
                       background=data['background'],
                       n_scale=cwt_kernels.n_scale)

    cwt.analyze(data=cwt_data)
    return cwt_data
Exemple #7
0
    def test_all_cwt_iterations(self):
        cwt_data = CWTData(
            counts=self.data["image"],
            background=self.data["background"],
            n_scale=self.kernels.n_scale,
        )
        self.cwt.analyze(data=cwt_data)

        transform_3d = cwt_data.transform_3d.data
        assert_allclose(transform_3d[0, 100, 100], 0.0401320295446)
        assert_allclose(transform_3d[0, 10, 10], -0.00117538066327)
        assert_allclose(transform_3d[1, 100, 100], 0.00112861578719)
        assert_allclose(transform_3d[1, 10, 10], -6.86491626269e-05)

        error = cwt_data.error.data
        assert_allclose(error[0, 100, 100], 0.00105275393856)
        assert_allclose(error[0, 10, 10], 0.000801986157367)
        assert_allclose(error[1, 100, 100], 5.54110995048e-05)
        assert_allclose(error[1, 10, 10], 3.9892257794e-05)

        approx = cwt_data.approx.data
        assert_allclose(approx[100, 100], 0.323369470219)
        assert_allclose(approx[10, 10], -0.0210240420041)

        approx_bkg = cwt_data.approx_bkg.data
        assert_allclose(approx_bkg[100, 100], 0.99988318386)
        assert_allclose(approx_bkg[10, 10], 0.486747980289)

        support_3d = cwt_data.support_3d.data
        assert_allclose(support_3d[0].sum(), 1151)
        assert_allclose(support_3d[1].sum(), 2368)

        model = cwt_data.model.data
        transform_2d = cwt_data.transform_2d.data
        assert_allclose(model.sum(), 103.96476418)
        assert_allclose(transform_2d.sum(), 9.91731463861)
Exemple #8
0
    significance_threshold=SIGNIFICANCE_THRESHOLD,
    significance_island_threshold=SIGNIFICANCE_ISLAND_THRESHOLD,
    remove_isolated=REMOVE_ISOLATED,
    keep_history=KEEP_HISTORY,
)


# In order to the algorithm was able to analyze source images, you need to convert them to a special format, i.e. create an CWTData object. Do this.

# In[ ]:


from gammapy.detect import CWTKernels, CWTData

cwt_data = CWTData(
    counts=data["counts"], background=data["background"], n_scale=N_SCALE
)


# In[ ]:


# Start the algorithm
cwt.analyze(cwt_data)


# ## Results of analysis
# 
# Look at the results of CWT algorithm. Print all the images.

# In[ ]:
Exemple #9
0
class TestCWTData:
    """
    Test CWTData class.
    """
    def setup(self):
        filename = "$GAMMAPY_DATA/tests/unbundled/poisson_stats_image/counts.fits.gz"
        image = Map.read(filename)
        background = image.copy(data=np.ones(image.data.shape, dtype=float))

        self.kernels = CWTKernels(n_scale=2,
                                  min_scale=3.0,
                                  step_scale=2.6,
                                  old=False)
        self.data = dict(image=image, background=background)
        self.cwt = CWT(kernels=self.kernels,
                       significance_threshold=2.0,
                       keep_history=True)
        self.cwt_data = CWTData(counts=image,
                                background=background,
                                n_scale=self.kernels.n_scale)
        self.cwt.analyze(data=self.cwt_data)

    def test_images(self):
        images = self.cwt_data.images()
        assert_allclose(images["counts"].data[25, 25],
                        self.data["image"].data[25, 25])
        assert_allclose(images["background"].data[36, 63],
                        self.data["background"].data[36, 63])

        model_plus_approx = images["model_plus_approx"].data
        assert_allclose(model_plus_approx[100, 100], 0.753205544726)
        assert_allclose(model_plus_approx[10, 10], -0.0210240420041)

        maximal = images["maximal"].data
        assert_allclose(maximal[100, 100], 0.0401320295446)
        assert_allclose(maximal[10, 10], 0.0)

        support_2d = images["support_2d"].data
        assert_allclose(support_2d.sum(), 2996)

    def test_cube_metrics_info(self):
        cubes = self.cwt_data.cubes()
        name = "transform_3d"
        cube = cubes[name].data
        info = self.cwt_data._metrics_info(data=cube, name=name)

        assert_equal(info["Shape"], "3D cube")
        assert_allclose(info["Variance"], 3.24405547338e-06)
        assert_allclose(info["Max value"], 0.041216412114)

    def test_image_info(self):
        t = self.cwt_data.image_info(name="residual")
        assert_equal(t.colnames, ["Metrics", "Source"])
        assert_equal(len(t), 7)

    def test_cube_info(self):
        t = self.cwt_data.cube_info(name="error")
        assert_equal(t.colnames, ["Metrics", "Source"])
        assert_equal(len(t), 7)

        t = self.cwt_data.cube_info(name="error", per_scale=True)
        assert_equal(t.colnames, ["Scale power", "Metrics", "Source"])
        assert_equal(len(t), 14)

    def test_info_table(self):
        t = self.cwt_data.info_table
        assert_equal(len(t.colnames), 7)
        assert_equal(len(t), 13)

    def test_sub(self):
        h = self.cwt.history
        diff = h[7] - h[5]
        assert_equal(diff.support_3d.data.sum(), 0)
        assert_allclose(diff.model.data.sum(), 20.4132906267)

    def test_io(self, tmpdir):
        filename = str(tmpdir / "test-cwt.fits")
        self.cwt_data.write(filename=filename, overwrite=True)
        approx = Map.read(filename, hdu="APPROX")
        assert_allclose(approx.data[100, 100], self.cwt_data._approx[100, 100])
        assert_allclose(approx.data[36, 63], self.cwt_data._approx[36, 63])

        transform_2d = Map.read(filename, hdu="TRANSFORM_2D")
        assert_allclose(transform_2d.data[100, 100],
                        self.cwt_data.transform_2d.data[100, 100])
        assert_allclose(transform_2d.data[36, 63],
                        self.cwt_data.transform_2d.data[36, 63])
Exemple #10
0
    tol=TOL,
    significance_threshold=SIGNIFICANCE_THRESHOLD,
    significance_island_threshold=SIGNIFICANCE_ISLAND_THRESHOLD,
    remove_isolated=REMOVE_ISOLATED,
    keep_history=KEEP_HISTORY,
)

# In order to the algorithm was able to analyze source images, you need to convert them to a special format, i.e. create an CWTData object. Do this.

# In[9]:

from gammapy.detect import CWTKernels, CWTData

cwt_data = CWTData(
    counts=data['image'],
    background=data['background'],
    n_scale=N_SCALE,
)

# In[10]:

# Start the algorithm
cwt.analyze(cwt_data)

# ## Results of analysis
#
# Look at the results of CWT algorithm. Print all the images.

# In[11]:

PLOT_VALUE_MAX = 5